\(s=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2015

s=(1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103)+(1/103-1/104+1/104-1/105+1/105-1/106+1/106-1/107)

  =(1-1/103)+(1/103-1/107)

  =1           -         1/107

  =106/107

 

20 tháng 4 2015

S=\(\frac{1}{1}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{10}\)+...+\(\frac{1}{100}\)-\(\frac{1}{103}\)+\(\frac{1}{103}\)-\(\frac{1}{104}\)+\(\frac{1}{104}\)-\(\frac{1}{105}\)+\(\frac{1}{105}\)-\(\frac{1}{106}\)+\(\frac{1}{106}\)-\(\frac{1}{107}\)

S=1-\(\frac{1}{107}\)

S=\(\frac{106}{107}\)

(Ở đề bài, ở phân số cuối cùng 1/106+107 nên sửa lại thành 1/106.107 sẽ được kết quả như trên)

20 tháng 4 2015

Ta có: \(S=\frac{1}{1}-\frac{1}{103}+\frac{1}{103}-\frac{1}{107}\)

          \(S=1-\frac{1}{107}=\frac{106}{107}\)

18 tháng 4 2015

Trong trường hợp bn viết nhầm 1/106.107 chứ ko phải 1/106+107

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}+\frac{1}{103.104}+\frac{1}{104.105}+\frac{1}{105.106}+\frac{1}{106.107}\)

\(S=\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)+\left(\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}+\frac{1}{105}-\frac{1}{106}+\frac{1}{106}-\frac{1}{107}\right)\)

\(S=\left(1-\frac{1}{103}\right)+\left(\frac{1}{103}-\frac{1}{107}\right)\)

\(S=\frac{102}{103}+\frac{4}{11021}\)

\(S=\frac{106}{107}\)

18 tháng 4 2015

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}+\frac{1}{103.104}+\frac{1}{104.105}+\frac{1}{105.106}+\frac{1}{106+107}\)

\(S=\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)+\left(\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}+\frac{1}{105}-\frac{1}{106}\right)+\frac{1}{106+107}\)

\(S=\left(1-\frac{1}{103}\right)+\left(\frac{1}{103}-\frac{1}{106}\right)+\frac{1}{106+107}\)

\(S=\frac{102}{103}+\frac{3}{10918}+\frac{11343}{106}\)

\(S=108\)

3 tháng 5 2019

\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\frac{102}{103}\)

\(B=\frac{34}{103}\)

3 tháng 5 2019

Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)

\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)

21 tháng 6 2017

Võ Thiện Tuấn viết tổng quát kết quả hay phép đề bài hả bạn ?

21 tháng 6 2017

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7} +....+\frac{1}{100}-\frac{1}{103}\)

\(=1-\frac{1}{103}\)

\(=\frac{102}{103}\)

18 tháng 2 2018

Ta có\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(1-\frac{1}{46}\)

Vì \(1-\frac{1}{46}< 1\)nên S<1

18 tháng 2 2018

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+.......+\frac{3}{43\cdot46}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+......+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}\)

Ta có \(1-\frac{1}{46}< 1\)=> S < 1

12 tháng 4 2018

\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}\)

\(1-\frac{1}{46}< 1\)

\(\Rightarrow S< 1\)

12 tháng 4 2018

nhan xet:3/1.4=1/1-1/4

3/4.7=1/4-1/7

3/7.10=1/7-1/10

.....................

3/40.43=1/40-1/43

3/43.46=1/43-1/46

S=1/1-1/3+1/3-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

S=1/1-1/46

S=46/46-1/46

S=45/46<1

vay s<1

12 tháng 4 2020

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

ta có 

\(\frac{3}{1.4}=1-\frac{1}{4}\)

\(\frac{3}{4.7}=\frac{1}{4}-\frac{1}{7}\)

.....

\(\frac{3}{43.46}=\frac{1}{43}-\frac{1}{46}\)

( mình nghĩ cậu chưa đc làm dạng như này nên ghi ra , lần sau có gặp mà biết cách làm  r thì bỏ bước trên đi cx đc nha)

\(=>S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=>S=1-\frac{1}{46}< 1\)(dpcm

27 tháng 4 2017

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}\)

Đến đây ta suy được ra S<1

27 tháng 4 2017

Ta có :

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}\)

\(S=\frac{45}{46}< 1\)

Vậy \(S< 1\)

25 tháng 2 2016

S= 1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+|1/43-1/46

S= 1-1/46

S= 45/46<1

vậy S<1

duyệt đi

25 tháng 2 2016

S=  1- 1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

S= 1+ (1/4-1/4)+(1/7-1/7)+...+(1/43-1/43)-1/46

S= 1-1/46= 45/46<1

Suy ra S<1