\(S=\frac{27+4500+135+550.2}{2+4+6+...+14+16+18}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\frac{27+4500+135+550.2}{2+4+6+...+14+16+18}\)

\(S=\frac{4527+135+1100}{\left(2+18\right).9:2}=\frac{4662+1100}{20.9:2}=\frac{5762}{90}=\frac{2881}{45}\)

3 tháng 8 2015

\(B=\frac{27+4500+135+1100}{\frac{\left(2+18\right).9}{2}}=\frac{5762}{10.9}=\frac{2881}{45}\)

16 tháng 8 2017

\(S=\dfrac{27+4500+135+550.2}{2+4+6+...+14+16+18}\)

\(S=\dfrac{4527+135+1100}{\left(2+18\right).9.2}\)

\(S=\dfrac{4662+1100}{20.9.2}\)

\(S=\dfrac{5762}{90}\)

\(S=\dfrac{2881}{45}\)

28 tháng 2 2022

`S=(27+4500+135+550.2)/(2+4+6+…+14+16+18)`

`S=(27+4500+135+1100)/((2+18)+(4+16)+…+(8+12)+10)`

`S=((27+135)+(4500+1100))/(20+20+…+20+10)` `(`Có `4` số hạng `20)`

`S=(162+5600)/(20.4+10)`

`S=5762/90`

`S=2881/45`

26 tháng 11 2018

a,=410

b,=316

c,=3n

d,=1016

e,=...

26 tháng 11 2018

a) \(16^6:4^2=\left(4^2\right)^6:4^2=4^{12}:4^2=4^{10}\)

b) \(27^8:9^4=\left(3^3\right)^8:\left(3^2\right)^4=3^{24}:3^8=3^{16}\)

c) \(12^n:2^{2n}=12^n:4^n=3^n\)

d) \(4^{14}\times5^{18}=\left(4^7\right)^2\times\left(5^9\right)^2=\left(4^7\times5^9\right)^2\)

26 tháng 6 2016

\(\frac{27+4500+135+550.2}{2+4+6+...+16+18}\)\(\frac{27+4500+135+1100}{\left(18+2\right).\left[\left(18-2\right):2+1\right]:2}\)=  \(\frac{5762}{20.19:2}\)=\(\frac{5762}{190}\)=\(\frac{2881}{95}\)

27 tháng 2 2019

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Bài làm

Ta có: 

\(\frac{1}{11}>\frac{1}{20}\)\(\frac{1}{12}>\frac{1}{20}\)\(\frac{1}{13}>\frac{1}{20}\)\(\frac{1}{14}>\frac{1}{20}\)\(\frac{1}{15}>\frac{1}{20}\)\(\frac{1}{16}>\frac{1}{20}\)\(\frac{1}{17}>\frac{1}{20}\)\(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)

=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)

hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)

=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Do đó: \(S=\frac{1}{2}\)

# Chúc bạn học tốt #

29 tháng 5 2019

#)Giải :

Câu 1 :

Đặt \(A=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)

\(\Rightarrow A>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)( 8 số hạng )

\(\Rightarrow A>\frac{8}{27}=\frac{8}{27}\)

\(\Rightarrow A>\frac{8}{27}\)

        #~Will~be~Pens~#

Câu 1:(trội)

Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\left(đpcm\right)\)

 Câu 2:\(D=\frac{2^{25}.3^{15}+3^{15}.5.2^{26}}{2^{25}.3^{17}+3^{15}.2^{25}}=\frac{2^{25}3^{15}\left(1+5.2\right)}{2^{25}3^{15}\left(3^2+1\right)}=\frac{11}{10}\)