Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ôi, trang wed không tự nhận diện được công thức latex. Mình đăng lại bài giải:
a) Ta có
\(4T=\frac{4}{1+\sqrt{5}}+\frac{4}{\sqrt{5}+\sqrt{9}}+...+\frac{4}{\sqrt{2013}+\sqrt{2017}}\)
\(=\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{5}+1}+...+\frac{\left(\sqrt{2017}+\sqrt{2013}\right)\left(\sqrt{2017}-\sqrt{2013}\right)}{\sqrt{2017}+\sqrt{2013}}\)
\(=\sqrt{5}-1+\sqrt{9}-\sqrt{5}+\sqrt{13}-\sqrt{9}+...+\sqrt{2017}-\sqrt{2013}\)
\(=\sqrt{2017}-1\)
\(\Rightarrow T=\frac{\sqrt{2017}-1}{4}\)
b) Ta có
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2-1}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2}\sqrt{1}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Tương tự ta có
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
......................
\(\frac{1}{100\sqrt{99}+99\sqrt{100}}=\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
Suy ra
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
a)\[\begin{array}{l}
4T = \frac{4}{{1 + \sqrt 5 }} + \frac{4}{{\sqrt 5 + \sqrt 9 }} + ... + \frac{4}{{\sqrt {2013} + \sqrt {2017} }}\\
= \frac{{(\sqrt 5 + 1)(\sqrt 5 - 1)}}{{1 + \sqrt 5 }} + ... + \frac{{(\sqrt {2017} + \sqrt {2013} )(\sqrt {2017} - \sqrt {2013} )}}{{\sqrt {2013} + \sqrt {2017} }}\\
= \sqrt 5 - 1 + \sqrt 9 - \sqrt 5 + ... + \sqrt {2017} - \sqrt {2013} \\
= 1 + \sqrt 5 - \sqrt 5 + \sqrt 9 - \sqrt 9 + ... + \sqrt {2013} - \sqrt {2013} + \sqrt {2017} \\
= 1 + \sqrt {2017} \\
\Rightarrow T = \frac{{1 + \sqrt {2017} }}{4}
\end{array}\]
\(=\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+...+\frac{\sqrt{2011}-\sqrt{2009}}{2011-2009}=\frac{\sqrt{2011}-1}{2}\)
Bạn ơi cái này mk chỉ ghi cách làm và ct thôi nha
đây dùng hàng đẳng thức (a-b)(a+b)=a^2-b^2
còn kia là công thức toán lớp 6
\(\frac{1}{\sqrt{3}+\sqrt{1}}=\frac{\sqrt{3}-\sqrt{1}}{\left(\sqrt{3}+\sqrt{1}\right)\left(\sqrt{3}-\sqrt{1}\right)}=\frac{\sqrt{3}-\sqrt{1}}{\sqrt{3^2}-\sqrt{1^2}}=\frac{1}{2}\left(\sqrt{3}-\sqrt{1}\right)\)
Tương tự:
\(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{1}{2}\left(\sqrt{5}-\sqrt{3}\right)\)
.....
\(\frac{1}{\sqrt{2019}+\sqrt{2017}}=\frac{1}{2}\left(\sqrt{2019}-\sqrt{2017}\right)\)
Cộng các vế với nhau ta được:
\(S=\frac{1}{2}\left(\sqrt{2019}-\sqrt{1}\right)=\frac{1}{2}\left(\sqrt{2019}-1\right)\)
\(S=\frac{\sqrt{3}-1}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2019^2-\left(2019^2-2\right)}\)
\(S=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{7}-\sqrt{5}}{2}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2}\)
\(S=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{2019^2}-\sqrt{2019^2-2}\right)\)
\(S=\frac{1}{2}\left(-1+\sqrt{2019^2}\right)\)
\(S=\frac{\left(2019-1\right)}{2}=1009\)
\(S=\frac{1-\sqrt{3}}{1-3}+\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{\sqrt{5}-\sqrt{7}}{5-7}+...+\frac{2019-\sqrt{2019^2-2}}{2019^2-2019^2-2}.\)
\(S=\frac{1-\sqrt{3}}{-2}+\frac{\sqrt{3}-\sqrt{5}}{-2}+\frac{\sqrt{5}-\sqrt{7}}{-2}+...+\frac{2019-\sqrt{2019^2-2}}{-2}.\)
\(-2S=1-\sqrt{3}+\sqrt{3}-\sqrt{5}+\sqrt{5}...+2019-\sqrt{2019^2-2}\)
\(-2S=1-\sqrt{2019^2-2}\Rightarrow S=\frac{\sqrt{2019^2-2}-1}{2}\)
chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)
a, Ta có
\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)
mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, áp dụng bđt ta có
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)
\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)
\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..
\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)
\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)
NX \(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}\) =\(\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}-1\right)}{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}+1\right)^2}\)
=\(\frac{\left(\left(\sqrt{n+1}-\sqrt{n}\right)^2-1^2\right)}{n+1-n-1-2\sqrt{n}}\) \(=\frac{n+1+n-2\sqrt{\left(n+1\right)n}-1}{-2\sqrt{n}}=\frac{2n-2\sqrt{n\left(n+1\right)}}{-2\sqrt{n}}\)
=\(\frac{n-\sqrt{n\left(n+1\right)}}{-\sqrt{n}}=\frac{n}{-\sqrt{n}}+\frac{\sqrt{n\left(n+1\right)}}{\sqrt{n}}=-\sqrt{n}+\sqrt{n+1}\)
thay vao Q ta co
Q= \(-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-...-\sqrt{2012}+\sqrt{2013}=-\sqrt{2}+\sqrt{2013}\)
Ta có:
\(\frac{1}{n\sqrt{n+4}+\left(n+4\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+4\right)}\left(\sqrt{n}+\sqrt{n+4}\right)}\)
\(=\frac{\sqrt{n+4}-\sqrt{n}}{4\sqrt{n\left(n+4\right)}}=\frac{1}{4}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+4}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{1\sqrt{5}+5\sqrt{1}}+\frac{1}{5\sqrt{9}+9\sqrt{5}}+...+\frac{1}{2009\sqrt{2013}+2013\sqrt{2009}}\)
\(=\frac{1}{4}.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2013}}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{\sqrt{2013}}\right)\)
Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)
Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)
Viết ngược lại đề bài nha rồi trục căn thức
\(2S=\sqrt{2013}-\sqrt{2011}+\sqrt{2011}-\sqrt{2009}+....+\sqrt{7}-\sqrt{5}+\sqrt{5}-\sqrt{3}\)
\(S=\frac{\sqrt{2013}-\sqrt{3}}{2}\)