\(\frac{1}{3}+\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016

M=3+32+33+...+3n

=>3M=32+33+34+...+3n+1

=>3M-M=3n+1-3

=>2M=3n+1-3

=>M=\(\frac{3^{n+1}-3}{2}\)

\(N=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)

=>3N\(=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)

=>3N-N=\(1-\frac{1}{3^n}\)

=>2N=\(1-\frac{1}{3^n}\Rightarrow N=\frac{1-\frac{1}{3^n}}{2}\)

14 tháng 6 2016

help megianroi

26 tháng 9 2019

Trl :
\(\frac{1}{9}.27^n=3^{n+2}\)

\(3^{-2}.\left(3^3\right)^n=3^{n+2}\)

\(3^{-2}.3^{3n}=3^{n+2}\)

\(\Rightarrow-2+3n=n+2\)

\(\Rightarrow3n=n+4\)

\(\Rightarrow2n=4\)\(\Rightarrow n=2\)

Hok tốt

26 tháng 9 2019

Trl :

\(\frac{1}{9}3^4.3^n=3^7\)

\(3^{-2}.3^4.3^n=3^7\)

\(\Rightarrow-2+4+n=7\)

\(\Rightarrow2+n=7\)

\(\Rightarrow n=7-2\)

\(\Rightarrow n=5\)

Hok tốt !

NV
24 tháng 6 2019

\(A=3+3^2+...+3^{50}\)

\(\Rightarrow3A=3^2+3^3+...+3^{50}+3^{51}\)

\(\Rightarrow3A-A=3^{51}-3\)

\(\Rightarrow2A=3^{51}-3\)

\(\Rightarrow A=\frac{3^{51}-3}{2}\)

\(B=2-2^2+2^3-2^4+...+2^{2019}-2^{2020}\)

\(2B=2^2-2^3+2^4-2^5+...+2^{2020}-2^{2021}\)

\(B+2B=2-2^{2021}\)

\(3B=2-2^{2021}\)

\(B=\frac{2-2^{2021}}{3}\)

NV
24 tháng 6 2019

\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2008.2009}\)

\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(C=1-\frac{1}{2009}\)

\(C=\frac{2008}{2009}\)

\(D=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(D=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(D=\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(D=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)

14 tháng 4 2017

Ta có 3A= \(^{3^2+3^3+3^4+...+3^{100}}\)

3A-A=2A= (\(3^2+3^3+3^4+...+3^{100}\))-(\(3+3^2+3^3+...+3^{99}\))

2A= \(3^{100}-3\)

theo bài ra ta có

2A+3=\(3^n\)\(3^{100}-3+3=3^n\)=\(^{3^{100}}\)\(\Rightarrow\)n=100

3 tháng 5 2020

hfghfghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

31 tháng 5 2019

#)Giải :

\(\frac{1}{9}.3^4.3^n=3^7\)

\(\frac{1}{9}.81.3^n=3^7\)

\(9.3^n=3^7\)

\(3^2.3^n=3^7\)

\(\Rightarrow2+n=7\)

\(\Rightarrow n=5\)

       #~Will~be~Pens~#

31 tháng 5 2019

#)Giải :

\(\frac{1}{9}.27^n=3^n\)

\(\Leftrightarrow\frac{1}{9}=\frac{3^n}{27^n}\)

\(\Leftrightarrow\frac{1}{9}=\left(\frac{1}{9}\right)^n\)

\(\Leftrightarrow n=1\)

         #~Will~be~Pens~#

20 tháng 6 2017

Mình ko biết sory

6 tháng 8 2017

nhìn mà ko muốn nghĩ luôn

5 tháng 5 2017

\(1.\left(x+3\right)^3=\frac{1}{-27}\)

\(\left(x+3\right)^3=\left(\frac{1}{-3}\right)^3\)

\(\Rightarrow x+3=\frac{1}{-3}\)

\(\Rightarrow x=\frac{-1}{3}-3\)

\(x=\frac{-10}{3}\)

23 tháng 4 2015

\(P=1+5+5^2+............+5^{2005}\)

\(5P=5+5^2+5^3+...........5^{2006}\)

\(5P-P=5^{2006}-1\)

\(P=\frac{5^{2006}-1}{4}\)