Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)
\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)
\(H=2+4+6+...+2n\)
chúng ta hãy quy đồng rồi cộng chúng lại với nhau thì sẽ ra kết quả và cậu hãy xem lai kiến thức mới học của cậu đi
Đặt A là tên biểu thức
A=1.2.3+2.3.4+...+n(n+1)(n+2)
4A=1.2.3.4+2.3.4.4+...+n(n+1)(n+2).4
4A=1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ n(n+1)(n+2)(n+3) - (n-1)n(n+1)(n+2)
4A=[1.2.3.4+2.3.4.5+...+n(n+1)(n+2)(n+3)] - [0.1.2.3+1.2.3.4+...+(n-1)n(n+1)(n+2)]
4A=n(n+1)(n+2)(n+3)-0.1.2.3
A=\(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
\(A=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+...+4n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4A=1.2.3.4+1.2.3.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left(n+3-n+1\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n\right)\)
\(\Rightarrow4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Câu hỏi của GT 6916 - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{20.21}\right)\)
\(=\frac{1}{2}.\frac{209}{420}\)
\(=\frac{209}{840}\)
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{19\cdot20\cdot21}\)
\(=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{19\cdot20\cdot21}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}-\frac{1}{20\cdot21}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot21}\right)\)
bn tự lm tp
Đặt B = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{8.9.10}\)
=> 2B = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{8.9.10}\)
=> 2B = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{8.9}-\frac{1}{9.10}\)
=> 2B = \(\frac{1}{1.2}-\frac{1}{9.10}\)
2B = \(\frac{22}{45}\)
B = \(\frac{22}{45}:2\)
=> B = \(\frac{11}{45}\)
Ta có : \(\frac{11}{45}.x=\frac{22}{45}\)
=> x = \(\frac{22}{45}:\frac{11}{45}\)
=> x = \(\frac{2}{1}\)
Đặt C =\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow C=\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\div2\)