K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

3F = 1 . 2 . 3 + 3 . 4 . ( 5 - 2 ) + 5 . 6 . ( 7 - 4 ) +.....+ 99 . 100 . (101 - 98 )

3F = 1. 2 . 3 + 3. 4 . 5 - 2 . 3 . 4 + 5 . 6 . 7 - 4 . 5 . 6 +.....+ 99 . 100 . 101 - 98 . 99 . 100

3F = 1 . 2 . 3 + 99 . 100. 101

3F = 3 . 2 + 3 . 33 . 100 . 101

3F = 3 ( 2 + 333 300)

=>F = 3 . 333 302 : 3

=> F = 333 302

Vậy F = 333 302

8 tháng 5 2016

Hinh nhu khong dung ban a

7 tháng 5 2016

Fx3=1x2x3+2x3x(4-1)+3x4x(5-2)+4x5x(6-3)+...+99x100x(101-98

Fx3=1x2x3+2x3x4-1x2x3+3x4x5-2x3x4+4x5x6-3x4x5+...+99x100x101-98x99x100

Fx3=99x100x101

F=333300

13 tháng 1 2018

Mình làm mẫu 1 bài nha !

Có : 12A = 1.5.12+5.9.12+....+101.105.12

= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)

= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105

= 1.5.12-1.5.9+101.105.109

= 1155960

=> A = 1155960 : 12 = 96330

Tk mk nha

13 tháng 1 2018

Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4

= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)

= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100

= 98.99.100.101

=> D = 98.99.100.101/4 = 24497550

7 tháng 5 2016

G = \(1^2\)+\(2^2\)\(3^2\)+....+\(100^2\)

G=1 +2(1+1) +3(2+1) +..... + 100(99+1)

G=1 + 1.2+ 2 + 2.3 +3+ ......+ 99.100+100

G=(1+2+3+....+100) +(1.2+2.3+.....+99.100)

G= \(\frac{100\left(100+1\right)}{2}\)+\(\frac{100\left(100-1\right)\left(100+1\right)}{3}\)

G=5050+333300

G=338350

 

TRả lời ;..............................................

SCSH: ( 100 - 1,2 ) : 2 = 49,4

Tổng: ( 100 + 1,2 ) : 2 = 50,6

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

3A = 1.2.3+2.3(4-1)+3.4.(5-2)+.+99.100.(101-98)

3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+99.100.101-98.99.100

3A = 99.100.101

9 tháng 6 2017

Có nhầm lẫn j ko vậy bn??

9 tháng 6 2017

chắc là ko

13 tháng 10 2018

\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\left(đpcm\right)\)

13 tháng 10 2018

Ta có : \(VT=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\)

               \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)

                \(=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{100}\right)\)

                \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+...+\frac{1}{100}\right)\) 

                 \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\)

                   \(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)     

\(\Rightarrow\) \(ĐPCM\)

14 tháng 10 2015

Đặt

S= 1.2 + 2.3 + 3.4 + ...+ 99.100  

3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3

3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)

3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100

3S = 99.100.101  3S = 3.33.100.101  

S=33.100.101= 333300

14 tháng 10 2015

Theo công thức ta có :

1.2+3.4+5.6+.....+99.100 = \(\frac{99.100.101}{3}=333300\)

6 tháng 5 2016

A = 1.2 + 2.3 + 3.4 + ....... + 99.100

3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3

3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2)  +.... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100

3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99  . 100 . 101

3A = 99 . 100 . 101 = 999900

A = 999900 : 3 = 333300

A=1*2+2*3+3*4+...+99*100

A=100*101*102:3

A=343400(công thức)