K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2021

\(B=1^2+2^2+..+\)\(98^2\)

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

19 tháng 10 2021
1,Tính các tổng sau. a) 1 + 2+ 3+ 4 +....+ nb) 2+4+6+8+...+2.nc) 1+3+5+7+...+(2.n +1)d) 1+4+7+10+..+2005e) 2+5+8+...+2006f) 1+5+9+..+20012,Tính nhanh : A = 1 +2 + 4 + 8 +16 + ...+ 8192 3,a, Tính tổng các số lẻ có 2 chữ số.b,Tính tổng các số chẵn có 2 chữ số.4,a,Tổng 1 +2+3+....+n có bao nhiêu số hạng để kết quả tổng bằng 190b,Có hay không số tự nhiên n sao cho 1+2+3+...+n =2004c,Chứng minh rằng: [(1+2+3+...+n)-7]không chia hết cho 10
8 tháng 4 2016

Cho A=$\frac{n-2}{n+3}$n−2n+‍3 .Tìm giá trị của n để

a) A là phân số

b) A là một số nguyên

mọi người giải hộ tui với!!!

8 tháng 4 2016

A=\(\frac{n-2}{n+3}\)

11 tháng 12 2023

a) A = 2 + 2² + 2³ + ... + 2¹⁰⁰

⇒ 2A = 2² + 2³ + 2⁴ + ... + 2¹⁰¹

⇒ A = 2A - A

= (2² + 2³ + 2⁴ + ... + 2¹⁰¹) - (2 + 2² + 2³ + ... + 2¹⁰⁰)

= 2¹⁰¹ - 2

b) B = 1 + 5 + 5² + ... + 5¹⁵⁰

⇒ 5B = 5 + 5² + 5³ + ... + 5¹⁵¹

⇒ 4B = 5B - B

= (5 + 5² + 5³ + ... + 5¹⁵¹) - (1 + 5 + 5² + ... + 5¹⁵⁰)

= 5¹⁵¹ - 1

⇒ B = (5¹⁵¹ - 1) : 4

5 tháng 3 2017

tui  bít kq nhưng phải và kb đi đã

5 tháng 3 2017

hải 3 cái /ngày

28 tháng 10 2017

B=1.(2-1)+2.(3-1)+3.(4-1)+...+98.(99-1)+99.(100-1)=(1.2+2.3+3.4+...+98.99+99.100)-(1+2+3+...+98+99)

Đặt

C=1.2+2.3+3.4+...+98.99+99.100 và D=1+2+3+...+98+99

D là cấp số cộng bạn tự tính

3C=1.2.3+2.3.3+3.4.3+....+98.99.3+99.100.3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)+99.100.(101-98)

3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5+...--97.98.99+98.99.100-98.99.100+99.100.101=99.100.101 => C=33.100.101

9 tháng 1

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)