K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

\(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{2}{98}+\frac{1}{99}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{98}{2}+1+\frac{97}{3}+1+...+\frac{2}{98}+1+\frac{1}{99}+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

29 tháng 3 2016

A= 99/1+98/2+...+2/98+1/99

<=>A= (99/1-98)+(98/2+1)+....+(2/98+1)+(1/99+1)

<=>A= 100/100+100/2+...+100/98+100/99

A= 100( 1/100+1/2+...+1/98+1/99)

Vậy B=1/100

-----------------------Good luck-------------------

5 tháng 11 2016

C  = \(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(C=\frac{\left(101+1\right).101:2}{1+1+...+1+1}\)

\(C=\frac{5151}{51}\)

\(C=101\)

b) \(D=\frac{3737.43-4343.37}{2+4+6+...+100}\)

\(D=\frac{37.101.43-43.101.37}{2+4+6+...+100}\)

\(D=\frac{0}{2+4+6+...+100}\)

\(D=0\)

7 tháng 11 2018

a)C=101

b)d=0

26 tháng 3 2015

Phân tích mẫu ta có

99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99

( cộng 1 vào mỗi phân số trừ 99/1   do đó phải trừ đi 99 để vẵn được đẳng thức đó)

= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)

Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100

27 tháng 3 2015

Phân tích mẫu ta có

99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99

( cộng 1 vào mỗi phân số trừ 99/1   do đó phải trừ đi 99 để vẵn được đẳng thức đó)

= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)

Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100

7 tháng 6 2019

\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(B=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)

\(B=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)

\(B=100\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)\)

Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=\frac{1}{100}\)

Vậy...

P/s: Hoq chắc

7 tháng 6 2019

#)Giải :

\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(B=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)\)

\(B=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)

\(B=100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=100\)

14 tháng 9 2016

sửa lại đề : 101+100+99+98+......+3+2+1/101-100+99-98+.....+3-2+1

tử số là :

(101+1).101:2=.....         (tự tih)

ta có mẫu số : (101 - 100)+(99 -98)+......+(3-2)+1

                   = 1+1+.....+1+1

mà mẫu số có 101 số => mấu số =101

=> phân số đó = 5151/101=51

ủng hộ nha

14 tháng 9 2016

\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\frac{\left(101+1\right).101:2}{1+1+1+...+1}\)

51 số 1

\(=\frac{5151}{51}\)

\(=101\)

22 tháng 7 2016

\(A=\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(A=\frac{\left(\frac{101-1}{1}+1\right)\left(\frac{101+1}{2}\right)}{\left(\frac{101-1}{2}+1\right)\left(\frac{101+1}{2}\right)-\left(\frac{100-2}{2}+1\right)\left(\frac{100+2}{2}\right)}=\frac{101.51}{51.51-50.51}\frac{101.51}{51}=101\)

22 tháng 7 2016

còn b đâu