K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)(1)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)(2)

Lấy (2) trừ đi (1) ta có :

\(2A=1-\frac{1}{3^{100}}\)

\(\Rightarrow A=\frac{\left(1-\frac{1}{3^{100}}\right)}{2}\)

6 tháng 3 2019

\(A=\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(3^2A=3^2\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-3^2\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(9A=\left(1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(3+\frac{1}{3}+...+\frac{1}{3^{97}}\right)\)

\(9A-A=\left(1-\frac{1}{3^{100}}\right)-\left(3-\frac{1}{3^{99}}\right)\)

\(8A=1-3=-2\)

A=\(\frac{-2}{8}=\frac{-1}{4}\)

\(B=4\left|\frac{-1}{4}\right|+\frac{1}{3^{100}}=1+\frac{1}{3^{100}}=1\)

Vậy B=1

15 tháng 2 2020

Trl:

          Bạn kia trả lời đúng rồi nhoa : ))

Hok tốt

~ nhé bạn ~

25 tháng 3

Tính toán giá trị biểu thức:

Bước 1: Phân tích biểu thức:

Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:

(3^(n-1)/3 + 3^n/3 + 3^(n+1)/3 + 3^(n+2)/3) . 3^(n+4)

Với n = 1, 5, 9, ..., 97.

Bước 2: Tính giá trị từng nhóm:

Xét nhóm thứ nhất:

(3^0/3 + 3^1/3 + 3^2/3 + 3^3/3) . 3^5

= (1 + 3 + 3^2 + 3^3) . (3^4 . 3)

= (1 + 3 + 3^2 + 3^3) . 81

Ta có thể sử dụng công thức khai triển tổng của cấp số nhân để tính giá trị trong ngoặc:

1 + 3 + 3^2 + 3^3 = (1 - 3^4) / (1 - 3) = 80

Do đó, giá trị của nhóm thứ nhất là:

(80) . 81 = 6480

Tương tự, ta có thể tính giá trị các nhóm tiếp theo:

Giá trị nhóm thứ hai: (80) . 3^4 . 81 = 6480 . 3^4

Giá trị nhóm thứ ba: (80) . 3^8 . 81 = 6480 . 3^8

...

Giá trị nhóm thứ 25: (80) . 3^96 . 81 = 6480 . 3^96

Bước 3: Cộng các giá trị từng nhóm:

Giá trị của biểu thức là tổng giá trị của các nhóm:

6480 + 6480 . 3^4 + 6480 . 3^8 + ... + 6480 . 3^96

= 6480 (1 + 3^4 + 3^8 + ... + 3^96)

Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:

Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.

Tổng của cấp số nhân này là:

(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80

Bước 5: Thay giá trị và kết luận:

Thay giá trị tổng vào biểu thức, ta được:

6480 (1 + 3^4 + 3^8 + ... + 3^96) = 6480 . (1 - 3^100) / -80

= -81(1 - 3^100)

Vậy, giá trị của biểu thức là -81(1 - 3^100).

Lưu ý:

  • Việc sử dụng công thức khai triển tổng cấp số nhân giúp đơn giản hóa việc tính giá trị các nhóm.
  • Cần chú ý đến số hạng đầu tiên, công bội và số hạng của cấp số nhân khi áp dụng công thức.

Kết quả:

Giá trị của biểu thức là -81(1 - 3^100).

Chúc bạn thành công!

13 tháng 1 2018

\(B=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+....+\frac{3}{1+2+3+...+100}\)

\(B=3+3\left(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+..+100}\right)\)

Xét thừa số tổng quát: \(\frac{1}{1+2+3+...+n}=\frac{1}{\left[\left(n-1\right):1+1\right]:2.\left(n+1\right)}=\frac{1}{\frac{n\left(n+1\right)}{2}}\)

Ta có: \(B=3+3\left(\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+...+\frac{1}{\frac{100\left(100+1\right)}{2}}\right)\)

\(B=3+3\left[2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\right]\)

\(B=3+6\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(B=3+6\left(\frac{1}{2}-\frac{1}{101}\right)\)