Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/3 + 7/1 = 2/3 + 7 = 2/3 + 21/3 = 23/3
25/48 + 11/24 = 25/48 + 22/48 = 47/48
5/7 + 3/8 = 40/56 + 21/56 = 61/56
15/24 + 12/6 = 5/8 + 2 = 5/8 + 16/8 = 21/8
5/6 + 4/3 = 5/6 + 8/6 = 13/6
3/8 + 7/12 = 9/24 + 14/24 = 23/24
9/14:6/7 +3/12:2*1/2
=3/4+1/8:2*1/2
=3/4+1/16*1/2
=3/4+1/32
=25/32
\(\frac{9}{14}\): \(\frac{6}{7}\) + \(\frac{3}{12}\): \(2\)x\(\frac{1}{2}\)
= \(\frac{3}{4}\)\(+\)\(\frac{1}{8}\)x\(\frac{1}{2}\)
=\(\frac{3}{4}\)\(+\)\(\frac{1}{16}\)
=\(\frac{9}{16}\)\(+\)\(\frac{1}{16}\)
= \(\frac{10}{16}\)
=\(\frac{5}{8}\)
nhé
\(\frac{2}{6}+\frac{9}{24}\)
\(=\frac{8}{24}+\frac{9}{24}\)
\(=\frac{17}{24}\)
Tương Tự vs các câu còn lại
\(\frac{7}{2}+\frac{1}{3}-\frac{5}{2}\)
\(=\left(\frac{7}{2}-\frac{5}{2}\right)+\frac{1}{3}\)
\(=1+\frac{1}{3}\)
\(=\frac{4}{3}\)
Tính bằng cách thuận tiện nhất
a,5*12*3*7/3*8*7*5
b, 2*5*4*6/4*3*5*7
Làm nhanh nha , mình đang cần gấp
a)
\(\frac{5.12.3.7}{3.8.7.5}=\frac{1.12.1.1}{1.8.1.10}=\frac{12}{8}=\frac{3}{2}\)
b)
\(\frac{2.5.4.6}{4.3.5.7}\frac{2.1.1.2.3}{1.1.1.7}=\frac{12}{7}\)
HOK TỐT!
\(\frac{3}{4}x\frac{4}{5}:\frac{3}{5}x\frac{6}{7}:\frac{1}{7}x\frac{5}{6}\)\(=\)\(\frac{3}{4}x\frac{4}{5}x\frac{5}{3}x\frac{6}{7}x\frac{7}{1}x\frac{5}{6}\)\(=\)\(\frac{3x4x5x6x7x5}{4x5x3x7x1x6}\)\(=\)\(\frac{\left(3\right)x\left(4\right)x\left(5\right)x\left(6\right)x\left(7\right)x5}{\left(3\right)x\left(4\right)x\left(5\right)x\left(6\right)x\left(7\right)x1}\)\(=\)\(\frac{5}{1}\)\(=\)\(5\).
a] 4/12 ; 5/12 ; 11/2 ; 1/4
b] 1 ; 9/12; 12/5 ; 11/3
c] 8/21; 6/11;8/7
d] 2/3 ;2/7 15/2
a]1/3 5/12 11/2 1/4
b]1 3/4 12/5 33/9
c]8/21 6/11 8/7
d]2/3 2/7 15/2
a
\(\frac{3}{4}+\frac{1}{5}\)
\(=\frac{15}{20}+\frac{4}{20}\)
\(=\frac{19}{20}\)
b
\(\frac{1}{36}+\frac{5}{12}\)
\(\frac{5}{12}=\frac{5\times3}{12\times3}=\frac{15}{36}\)
\(\frac{1}{36}+\frac{15}{36}=\frac{16}{36}=\frac{4}{9}\)
c
\(\frac{3}{4}+\frac{1}{6}\)
\(=\frac{18}{24}+\frac{4}{24}\)
\(=\frac{22}{24}=\frac{12}{11}\)
TL
a)3/4+1/5=19/20
b)1/36+5/12=4/9
c) 3/4+1/6=11/12
HT