Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{6480}\right)\)
\(=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\right)\)
\(=5\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{81-80}{80.81}\right)\)
\(=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{80}-\frac{1}{81}\right)\)
\(=5\left(1-\frac{1}{81}\right)=\frac{5.80}{81}=\frac{400}{81}\)
b)
\(B=7\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{483}\right)\)
\(=7.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{21.23}\right)\)
=> \(2.B=7\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{21.23}\right)\)
\(=7\left(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{23-21}{21.23}\right)\)
\(=7.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{21}-\frac{1}{23}\right)\)
\(=7\left(\frac{1}{3}-\frac{1}{23}\right)=\frac{7.20}{69}=\frac{140}{69}\)
=> \(B=\frac{140}{69}:2=\frac{70}{69}\)
2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
=\(1-\frac{1}{15}=\frac{14}{15}\)
\(\Rightarrow S=\frac{7}{15}\)
a. Ta có:A= 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
A=1/2(1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)
A=1/2(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15)
A=2(1-1/15)
A=1/2.14/15
A=7/15
a) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{1}{2}.\frac{10}{39}\)
\(=\frac{5}{39}\)
a)1/3.5+1/5.7+...+1/11.13
=1/2x(1/3-1/5+1/5-1/7+...+1/11-1/13)
=1/2x(1/3-1/13)
=1/2x10/39
=5/39
\(X-\left(\frac{31}{5}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}\right)=\frac{9}{13}\)
\(X-\left(\frac{31}{5}+\frac{31}{3\cdot5}+\frac{31}{5\cdot7}+\frac{31}{7\cdot9}+\frac{31}{9\cdot11}+\frac{31}{11\cdot13}\right)=\frac{9}{13}\)
\(X-\left[\frac{31}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)+\frac{31}{5}\right]=\frac{9}{13}\)
\(X-\left[\frac{31}{2}\cdot\left(\frac{1}{3}-\frac{1}{13}\right)+\frac{31}{5}\right]=\frac{9}{13}\)
\(X-\left[\frac{31}{2}\cdot\frac{10}{39}+\frac{31}{5}\right]=\frac{9}{13}\)
\(X-\frac{1984}{195}=\frac{9}{13}\)
\(\Rightarrow X=\frac{9}{13}+\frac{1984}{195}=\frac{163}{15}\)
a) \(\frac{4}{11}-\frac{7}{15}+\frac{7}{11}-\frac{5}{15}\)
\(=\left(\frac{4}{11}+\frac{7}{11}\right)-\left(\frac{7}{15}+\frac{5}{15}\right)\)
\(=1-\frac{4}{5}\)
\(=\frac{1}{5}\)
b) \(\frac{7}{3}-\frac{4}{9}-\frac{1}{3}-\frac{5}{9}\)
\(=\left(\frac{7}{3}-\frac{1}{3}\right)-\left(\frac{4}{9}+\frac{5}{9}\right)\)
\(=2-1\)
\(=1\)
c) \(\frac{1}{4}+\frac{7}{33}-\frac{5}{3}\)
\(=\frac{-1}{4}+\frac{-16}{11}\)
\(=\frac{-75}{44}\)
d) \(\frac{-3}{4}\times\frac{8}{11}-\frac{3}{11}\times\frac{1}{2}\)
\(=\frac{-6}{11}-\frac{3}{22}\)
\(=\frac{15}{22}\)
e) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}+\frac{1}{13\times15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{4}{15}\)
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)= \(\frac{2}{15}\)
=>5x=\(5\frac{1}{3}:\frac{2}{5}\)
=>5x=\(\frac{40}{3}\)
=>x=\(\frac{8}{3}\)
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101
A = 2 - 2/101 = 200/101
B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51
B = 3-3/51(tự tính nhé)
C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31
C = 5(5-1/31)(tự tính)
D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)
2E nhân lên rồi giải giống trên
3F Rồi nhân 4/77 và rút gọn thì tính được
a, A= \(\frac{1}{1}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0
A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)
Ta có:
A=5/15+5/35+5/63+5/99+...+5/2915
=>A=5/3.5+5/5.7+5/7.9+5/9.11+...+5/53.55
=>A=5/2.(2/3.5+2/5.7+2/7.9+2/9.11+...+2/53.55)
=>A=5/2.(2/3-2/5+2/5-2/7+2/7-2/9+2/9-2/11+...+2/53-2/55)
=>A=5/2.(2/3-2/55)
=>A=5/2.104/165
=>A=52/33
Vậy A=52/33
OK!
thank