\(\frac{1}{15}\)+\(\frac{1}{35}\)+...+<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)

\(B=5\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\Rightarrow B=5\cdot\left(1-\frac{1}{103}\right)=5\cdot\frac{102}{103}=\frac{510}{103}\)

\(C=5\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}\right)\)

\(\Rightarrow C=5\cdot\left(1-\frac{1}{101}\right)=5\cdot\frac{100}{101}=\frac{500}{101}\)

7 tháng 5 2019

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

\(C=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

5 tháng 5 2017

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

5 tháng 5 2017

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)\)

\(B=\frac{510}{103}\)

1 tháng 8 2020

\(M=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(\Rightarrow M=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\Rightarrow2M=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{16}{51}\)

\(\Rightarrow M=\frac{8}{51}\)

\(N=\frac{-5}{1.3}+\frac{-5}{3.5}+...+\frac{-5}{2013.2015}\)

\(\Rightarrow N=-\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}.\frac{2014}{2015}\)

\(\Rightarrow N=-\frac{1007}{403}\)

20 tháng 3 2017

a) 2A= 1+1/2^2+1/2^3+...+1/2^2015+1/2^2016

2A-A=(1+1/2+1/2^2+...+1/2^2015+1/2^2016)-(1/2+1/2^2+...+1/2^2016+1/2^2017)

A= 1-1/2^2017

b) B=5.(5/1.6+5/6.11+...+5/26.31)

B=5.(1/5-1/6+1/6-1/11+1/11...-1/26+1/26-1/31)

B= 5.(1/5-1/31)

B=5.26/155

B=26/31

19 tháng 3 2017

cần giải ko, đợi 1 chút 30p sau tôi giúp cho 

24 tháng 7 2019

a) \(\frac{4}{11}-\frac{7}{15}+\frac{7}{11}-\frac{5}{15}\)

\(=\left(\frac{4}{11}+\frac{7}{11}\right)-\left(\frac{7}{15}+\frac{5}{15}\right)\)

\(=1-\frac{4}{5}\)

\(=\frac{1}{5}\)

b) \(\frac{7}{3}-\frac{4}{9}-\frac{1}{3}-\frac{5}{9}\)

\(=\left(\frac{7}{3}-\frac{1}{3}\right)-\left(\frac{4}{9}+\frac{5}{9}\right)\)

\(=2-1\)

\(=1\)

c) \(\frac{1}{4}+\frac{7}{33}-\frac{5}{3}\)

\(=\frac{-1}{4}+\frac{-16}{11}\)

\(=\frac{-75}{44}\)

d) \(\frac{-3}{4}\times\frac{8}{11}-\frac{3}{11}\times\frac{1}{2}\)

\(=\frac{-6}{11}-\frac{3}{22}\)

\(=\frac{15}{22}\)

e) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\) 

\(=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}+\frac{1}{13\times15}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(=\frac{1}{3}-\frac{1}{15}\)

\(=\frac{4}{15}\)

1 tháng 6 2020

sao bn phũ với mk thế:(( đx ko giải lại còn nói thếbucminh

3 tháng 6 2020

Nó dễ mà :(

13 tháng 4 2019

@@ dùng máy tính mà tính 

Anh làm mẫu 1 phần 

\(\frac{\frac{2}{2017}+\frac{2}{2018}}{\frac{5}{2017}+\frac{5}{2018}}=\frac{2.\left(\frac{1}{2017}+\frac{1}{2018}\right)}{5.\left(\frac{1}{2017}+\frac{1}{2018}\right)}=\frac{2}{5}\)

13 tháng 4 2019

Thanks!

1 tháng 5 2019

a, -5/6 -x = 7/12 + -1/3
⇔-10/12 - 12x/12 = 7/12 + -4/12
⇒-10 - 12x = 7 - 4
⇔-12x = 7 - 4 +10
⇔-12x = 13
⇔x = -13/12
b, x+13/-15 = 1/3
⇔-(x+13)/15 = 5/15
⇒ -x - 13 = 5
⇔-x = 5 +13
⇔-x = 18
⇔x = -18
c,-15/x-1 = -3/5
⇔-75/(x-1).5 = -3.(x-1)/5.(x-1)
⇒-75 = -3x + 3
⇔3x = 3 + 75
⇔3x = 78
⇔x = 26
d, (1/2).x + -2/5 = 1/5
⇔5x/10 + -4/10 = 1/10
⇒5x - 4 = 1
⇔5x = 1 + 4
⇔5x = 5
⇔x = 1
e, (-2/3).x + 1/5 = 1/10
⇔-20x/30 + 6/30 = 3/30
⇒-20x + 6 = 3
⇔-20x = 3 - 6
⇔-20x = -3
⇔x = 3/20
f, 4/5 - (1/2).x = 1/10
⇔8/10 - 5x/10 = 1/10
⇒8 - 5x = 1
⇔-5x = 1 - 8
⇔-5x = -7
⇔x=7/5

Bài 1:

a) Ta có: \(\frac{3}{5}+\frac{4}{15}\)

\(=\frac{9}{15}+\frac{4}{15}\)

\(=\frac{13}{15}\)

b) Ta có: \(\frac{-3}{5}+\frac{5}{7}\)

\(=\frac{-21}{35}+\frac{25}{35}=\frac{4}{35}\)

c) Ta có: \(\frac{5}{6}:\frac{-7}{12}\)

\(=\frac{5}{6}\cdot\frac{-12}{7}=\frac{-60}{42}=\frac{-10}{7}\)

d) Ta có: \(\frac{-21}{24}:\frac{-14}{8}\)

\(=\frac{-7}{8}:\frac{-7}{4}\)

\(=\frac{-7}{8}\cdot\frac{4}{-7}=\frac{4}{8}=\frac{1}{2}\)

e) Ta có: \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}\)

\(=\frac{-3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)\)

\(=-\frac{3}{5}\cdot2=\frac{-6}{5}\)

f) Ta có: \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{3}\)

\(=\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{1}{3}\cdot4\)

\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}-4\right)\)

\(=\frac{1}{3}\cdot\left(-2\right)=\frac{-2}{3}\)

g) Ta có: \(\frac{4}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{19}+\frac{5}{7}\)

\(=\frac{4}{19}\cdot\frac{-3}{7}+\frac{5}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{-3}\)

\(=-\frac{3}{7}\left(\frac{4}{19}+\frac{5}{19}+\frac{-5}{3}\right)\)

\(=\frac{-3}{7}\cdot\left(\frac{27}{57}+\frac{-95}{57}\right)\)

\(=\frac{-3}{7}\cdot\frac{-68}{57}=\frac{68}{133}\)

h) Ta có: \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}\)

\(=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{5}{13}\right)\)

\(=\frac{5}{9}\)