Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=6^2+6^4+6^6+...+6^{98}+6^{100}\)
Ta có: \(A=6^2+6^4+6^6+...+6^{98}+6^{100}\)
\(\Leftrightarrow36A=6^4+6^6+...6^{100}+6^{102}\)
\(\Leftrightarrow A-36A=6^2+6^4+6^6+...6^{98}+6^{100}-6^4-6^6-...-6^{100}-6^{102}\)
\(\Leftrightarrow-35\cdot A=6^2-6^{102}\)
\(\Leftrightarrow A=\dfrac{6^{102}-6^2}{35}\)
a: 5A=5+5^2+...+5^2023
=>4A=5^2023-1
=>A=(5^2023-1)/4
b: 6B=6^2+6^3+...+6^41
=>5B=6^41-6
=>B=(6^41-6)/5
c: 16C=4^4+4^6+...+4^16
=>15C=4^16-4^2
=>C=(4^16-4^2)/15
d: 9D=3^3+3^5+...+3^27
=>8D=3^27-3
=>D=(3^27-3)/8
C = 1 + 6 + 62+ 63+...+ 6100
6C = 6 + 62+ 63 +...+ 6100 + 6101
6C - C = 6101 - 1
5C = 6101 - 1
C = \(\dfrac{6^{101}-1}{5}\)
\(C=1+6+6^2+...+6^{100}\)
\(\Rightarrow C=\dfrac{6^{100+1}-1}{6-1}\)
\(\Rightarrow C=\dfrac{6^{101}-1}{5}\)
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + 12 + ... + 61 - 62 - 63 + 64 ( 64 số )
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ( 9 - 10 - 11 + 12 ) + ... + ( 61 - 62 - 63 + 64 ) ( 16 nhóm )
= 0 + 0 + 0 + ... + 0 ( 16 số 0 )
= 0 . 16
= 0
a: \(2A=2^1+2^2+...+2^{2022}\)
\(\Leftrightarrow A=2^{2022}-1\)
A = 1+6+6^2+...+6^100
6A = 6 + 6^2+ 6^3+6^4+...+6^100+6^101
6A - A = (6+6^2+6^3+..+6^100+6^101)-(1+6+6^2+...6^100)
5A = 6^101 -1
A = (6^101-1) :5