Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+a+1=0\)
\(\Leftrightarrow a^2+2.a.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2=-\frac{3}{4}\) ( Vô nghiệm vì \(\left(a+\frac{1}{2}\right)^2\ge0\)
Vậy không tồn tại số a sao cho \(a^2+a+1=0\)nên Biểu thức A không tồn tại
phantuananh mấy tháng nữa chắc mk cũng chả cần nữa rồi
do có \(1.f\left(x\right)-1.f\left(x-1\right)=...\) nên hệ số của \(x^4\) có thể là bất kì số nào khác 0. Ta lấy là số 1 cho đơn giản.
Đặt \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\)
Thay x = -1,0,1,2 (hoặc 4 số bất kì) vào \(f\left(x\right)-f\left(x-1\right)=x^3\), ta được hệ 4 ẩn, 4 pt bậc nhất, từ đó giải ra a, b, c, d.
Thay vô Sn.
Gọi F(x) = \(ax^4+bx^3+cx^2+dx+e\)
=> F(x-1) = \(a\left(x-1\right)^4+b\left(x-1\right)^3+c\left(x-1\right)^2+d\left(x-1\right)+e\)
F(x) - f(x-1) = x^3 . Rút gọn sau đó cho hệ số bằng nhau
\(Sn=1+2^3+3^3+4^3+...+n^3=\left(1+2+...+n\right)^2=\left(\frac{n\left(n-1\right)}{2}\right)^2\)
Dễ dàng cm bằng pp quy nạp
Với n = 2011 => S2011 =.....
\(B1,1,S_{3n}+3S_n=\left(2-\sqrt{3}\right)^{3n}+\left(2+\sqrt{3}\right)^{3n}+3\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)
\(=\left[\left(2-\sqrt{3}\right)^n\right]^3+\left[\left(2+\sqrt{3}\right)^n\right]^3\)
\(+3\left[\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\right]^n\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)
Ta có hằng đẳng thức \(a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3\)
Ở đây với \(a=\left(2-\sqrt{3}\right)^n\)và \(b=\left(2+\sqrt{3}\right)^n\)
Nên \(S_{3n}+3S_n=\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]^3=S_n^3\)
\(2,S_3=\left(2-\sqrt{3}\right)^3+\left(2+\sqrt{3}\right)^3\)
\(=\left(2-\sqrt{3}+2+\sqrt{3}\right)\left(2-\sqrt{3}-\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)+2+\sqrt{3}\right)\)
\(=4\left[4-\left(4-3\right)\right]\)
\(=12\)
Ta có \(S_4=\left(2-\sqrt{3}\right)^4+\left(2+\sqrt{3}\right)^4\)
\(=\left[\left(2-\sqrt{3}\right)^2\right]^2+\left[\left(2+\sqrt{3}\right)^2\right]^2\)
\(=\left(7-4\sqrt{3}\right)^2+\left(7+4\sqrt{3}\right)^2\)
\(=97-56\sqrt{3}+97+56\sqrt{3}\)
\(=194\)
\(B2,F=x^4+6x^3+13x^2+12x+12\)(Bài này cẩn thận dấu "=")
\(=\left(x^4+6x^3+9x^2\right)+4x^2+12x+12\)
\(=\left(x^2+3x\right)^2+4\left(x^2+3x\right)+4+8\)
\(=\left(x^2+3x+2\right)^2+8\ge8\)
Dấu "=" tại \(x^2+3x+2=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
T thay mặt bạn Tuấn giúp bạn Tuấn làm bài tập của bạn Tuấn nhé :)
Ta có
\(\frac{m^2}{4}+n^2\ge mn\)
\(\frac{m^2}{4}+p^2\ge mp\)
\(\frac{m^2}{4}+q^2\ge mq\)
\(\frac{m^2}{4}+1\ge m\)
Cộng vế theo vế được
m2 + n2 + p2 + q2 + 1 \(\ge\)m(n + p + q + 1)