Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 1
=ax5-x5-9xy-4xy-7x
=ax5-(5x+7x)-(9xy+4xy)
=5ax-12x-13xy
2
M=4a+ab-2b+2a-2b+ab
=6a+2ab-4b
n=6a+2b-ab+2a
=8a+2b-ab
m-n=6a+2ab-4b-8a-2b+ab
=3ab-2a-6b
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{a^2}\) = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)
\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\))2 (2)
Từ (1) và (2) ta có :
\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)
⇒
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
= = = = = (1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
= =
= ⇒ = ()2 (2)
Từ (1) và (2) ta có :
= + y2 + z2 = ( )2 (đpCm)
Áp dụng tính chất các dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)
\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)
\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)
\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)
\(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))
https://lazi.vn/edu/exercise/864720/cho-a-b-c-a2-b2-c2-1-va-x-a-y-b-z-c-chung-minh-rang-x-y-z2-x2-y2-z2
liệt phím? Mù mắt?
Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))
a) ta có: \(M=\left(\frac{1}{3}a-\frac{1}{3}b\right)-\left(a+2b\right)\)
\(M=\frac{1}{3}a-\frac{1}{3}b-a-2b\)
\(M=(\frac{1}{3}a-a)+\left(\frac{-1}{3}b-2b\right)\)
\(M=\frac{-2}{3}a+\frac{-7}{3}b\)
\(N=\frac{1}{3}a-\frac{1}{3}b-\left(a-b\right)\)
\(N=\frac{1}{3}a-\frac{1}{3}b-a+b\)
\(N=\left(\frac{1}{3}a-a\right)+\left(b-\frac{1}{3}b\right)\)
\(N=\frac{-2}{3}a+\frac{2}{3}b\)
\(\Rightarrow M+N=\left(\frac{-2}{3}a+\frac{-7}{3}b\right)+\left(\frac{-2}{3}a+\frac{2}{3}b\right)\)
\(=\frac{-2}{3}a+\frac{-7}{3}b+\frac{-2}{3}a+\frac{2}{3}b\)
\(=\left(\frac{-2}{3}a-\frac{2}{3}a\right)+\left(\frac{-7}{3}b+\frac{2}{3}b\right)\)
\(=\frac{-4}{3}a+\frac{-5}{3}b\)
\(\Rightarrow M+N=\frac{-4}{3}a-\frac{5}{3}b\)
ta có: \(M-N=\left(\frac{-2}{3}a+\frac{-7}{3}b\right)-\left(\frac{-2}{3}a+\frac{2}{3}b\right)\)
\(=\frac{-2}{3}a+\frac{-7}{3}b+\frac{2}{3}a-\frac{2}{3}b\)
\(=\left(\frac{-2}{3}a+\frac{2}{3}a\right)+\left(\frac{-7}{3}b-\frac{2}{3}b\right)\)
\(=0+\frac{-10}{3}b=\frac{-10}{3}b\)
\(\Rightarrow M-N=\frac{-10}{3}b\)
b) ta có: \(M=2a^2+ab-b^2-\left(-a^2+b^2-ab\right)\)
\(M=2a^2+ab-b^2+a^2-b^2+ab\)
\(M=\left(2a^2+a^2\right)+\left(ab+ab\right)+\left(-b^2-b^2\right)\)
\(M=3a^2+2ab+\left(-2b^2\right)\)
\(N=3a^2+b^2-\left(ab-a^2\right)\)
\(N=3a^2+b^2-ab+a^2\)
\(N=\left(3a^2+a^2\right)+b^2-ab\)
\(N=4a^2+b^2-ab\)
rồi bn tính như mk phần a nha!
c) ta có: \(M=\left(x+cy-z\right)+y+x-\left(z-x-y\right)\)
\(M=x+cy-z+y+x-z+x+y\)
\(M=\left(x+x+x\right)+\left(y+y\right)+\left(-z-z\right)+cy\)
\(M=3x+2y+\left(-2z\right)+cy\)
\(N=x-\left(x-\left(y-z\right)-x\right)\)
\(N=x-\left(x-y+z-x\right)\)
\(N=x-x+y-z+x\)
\(N=\left(x-x+x\right)+y-z\)
\(N=x+y-z\)
bn tính giúp mk cộng trừ 2 đa thức M; N luôn nha! mk chỉ rút gọn cho bn thôi
CHÚC BN HỌC TỐT!!!!