K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

a) ta có: \(M=\left(\frac{1}{3}a-\frac{1}{3}b\right)-\left(a+2b\right)\)

\(M=\frac{1}{3}a-\frac{1}{3}b-a-2b\)

\(M=(\frac{1}{3}a-a)+\left(\frac{-1}{3}b-2b\right)\)

\(M=\frac{-2}{3}a+\frac{-7}{3}b\)

\(N=\frac{1}{3}a-\frac{1}{3}b-\left(a-b\right)\)

\(N=\frac{1}{3}a-\frac{1}{3}b-a+b\)

\(N=\left(\frac{1}{3}a-a\right)+\left(b-\frac{1}{3}b\right)\)

\(N=\frac{-2}{3}a+\frac{2}{3}b\)

\(\Rightarrow M+N=\left(\frac{-2}{3}a+\frac{-7}{3}b\right)+\left(\frac{-2}{3}a+\frac{2}{3}b\right)\)

                      \(=\frac{-2}{3}a+\frac{-7}{3}b+\frac{-2}{3}a+\frac{2}{3}b\)

                        \(=\left(\frac{-2}{3}a-\frac{2}{3}a\right)+\left(\frac{-7}{3}b+\frac{2}{3}b\right)\)

                           \(=\frac{-4}{3}a+\frac{-5}{3}b\)

\(\Rightarrow M+N=\frac{-4}{3}a-\frac{5}{3}b\)

ta có: \(M-N=\left(\frac{-2}{3}a+\frac{-7}{3}b\right)-\left(\frac{-2}{3}a+\frac{2}{3}b\right)\)

                          \(=\frac{-2}{3}a+\frac{-7}{3}b+\frac{2}{3}a-\frac{2}{3}b\)

                           \(=\left(\frac{-2}{3}a+\frac{2}{3}a\right)+\left(\frac{-7}{3}b-\frac{2}{3}b\right)\)

                            \(=0+\frac{-10}{3}b=\frac{-10}{3}b\)

\(\Rightarrow M-N=\frac{-10}{3}b\)

b) ta có: \(M=2a^2+ab-b^2-\left(-a^2+b^2-ab\right)\)

               \(M=2a^2+ab-b^2+a^2-b^2+ab\)

               \(M=\left(2a^2+a^2\right)+\left(ab+ab\right)+\left(-b^2-b^2\right)\)

                 \(M=3a^2+2ab+\left(-2b^2\right)\)

\(N=3a^2+b^2-\left(ab-a^2\right)\)

\(N=3a^2+b^2-ab+a^2\)

\(N=\left(3a^2+a^2\right)+b^2-ab\)

\(N=4a^2+b^2-ab\)

rồi bn tính như mk phần a nha!

c) ta có:  \(M=\left(x+cy-z\right)+y+x-\left(z-x-y\right)\)

                 \(M=x+cy-z+y+x-z+x+y\)          

              \(M=\left(x+x+x\right)+\left(y+y\right)+\left(-z-z\right)+cy\)    

              \(M=3x+2y+\left(-2z\right)+cy\)

\(N=x-\left(x-\left(y-z\right)-x\right)\)

\(N=x-\left(x-y+z-x\right)\)

\(N=x-x+y-z+x\)

\(N=\left(x-x+x\right)+y-z\)

\(N=x+y-z\)

bn tính giúp mk cộng trừ 2 đa thức M; N luôn nha! mk chỉ rút gọn cho bn thôi

CHÚC BN HỌC TỐT!!!!

6 tháng 4 2017

bai 1

=ax5-x5-9xy-4xy-7x

=ax5-(5x+7x)-(9xy+4xy)

=5ax-12x-13xy

2

M=4a+ab-2b+2a-2b+ab

=6a+2ab-4b

n=6a+2b-ab+2a

=8a+2b-ab

m-n=6a+2ab-4b-8a-2b+ab

=3ab-2a-6b

10 tháng 3 2021

Bài 1 : 

\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)

hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)

mà \(xyz=2\Rightarrow-xyz=-2\)

hay N nhận giá trị -2 

Bài 2 : 

\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)

hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

hay biểu thức trên nhận giá trị là 24 

c, Ta có : \(a-b=3\Rightarrow a=3+b\)

hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)

\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi 

10 tháng 3 2021

1.Ta có:\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)

2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)

Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)

Vậy....

17 tháng 3 2023

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}\)  = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)

\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\)) (2) 

Từ (1) và (2) ta có :

\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)

17 tháng 3 2023

 ⇒ �2�2=�2�2=�2�2 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

�2�2  = �2�2 = �2�2 = �2+�2+�2�2+�2+�2 = �2+�2+�21 = �2+�2+�2 (1)

��=��=�� Áp dụng tính chất dãy tỉ số bằng nhau ta có:

��=��=��=�+�+��+�+� = �+�+�1 = �+�+�

�� = �+�+� ⇒ �2�2 = (�+�+�) (2) 

Từ (1) và (2) ta có :

�2�2 = �2 + y2 + z2 = ( �+�+�)2 (đpCm)

12 tháng 3 2023

Áp dụng tính chất các dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)

\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)

\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)

\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)

                         \(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))

 

12 tháng 3 2023

https://lazi.vn/edu/exercise/864720/cho-a-b-c-a2-b2-c2-1-va-x-a-y-b-z-c-chung-minh-rang-x-y-z2-x2-y2-z2

liệt phím? Mù mắt?

23 tháng 4 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

4 tháng 12 2021

Ko biết thì đừng bình luận vô đây.

5 tháng 12 2021

cho dãy tỉ số bằng nhau: 3a+b+2c/2a+c=a+3b+c/2b=a+2b+2c/b+c. tính giá trị biểu thức (a+b)(b+c)(c+a)/abc, với các mẫu số khác 0. Cái này cũng khó, nếu sai thì mong bạn thông cảm! 

25 tháng 8 2023

Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))