K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

Số tự nhiên có 5 chữ số có dạng \(\overline{abcde}\).

a có 4 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

e có 1 cách chọn.

\(\Rightarrow\) Có \(4.4.3.2.1=96\) số tự nhiên thoả mãn.

AH
Akai Haruma
Giáo viên
29 tháng 8 2021

Lời giải:

Gọi $S(A)$ là tổng các số tự nhiên gồm 5 chữ số khác nhau lập từ 0,1,2,3,4 mà số đầu tiên có thể là 0 

Gọi $S(B)$ là tổng các số tự nhiên gồm 5 chữ số khác nhau mà số đầu tiên là $0$

Trong tập A, mỗi số $0,1,2,3,4$ xuất hiện $\frac{5!}{5}=24$ lần ở mỗi vị trí chục nghìn, nghìn, trăm, chục, đơn vị. Do đó:

$S(A)=24(0+1+2+3+4)(1+10+10^2+10^3+10^4)=2666640$

Trong tập $B$, mỗi chữ số $1,2,3,4$ xuất hiện $\frac{4!}{4}=6$ lần ở mỗi vị trí. Do đó:

$S(B)=6(1+2+3+4)(1+10+10^2+10^3)=66660$

Tổng các số tự nhiên có 5 chữ số khác nhau lập từ 0,1,2,3,4 là:

$S(A)-S(B)=2599980$

23 tháng 11 2016

1. 5/42

2. 1/5

3. 12960

ok

23 tháng 11 2016

3. 2592 mới đúng

1,2 hình như cũng sai rồi

 

2 tháng 6 2018

Đáp án C

Số các số gồm 5 chữ số đôi 1 khác nhau là: 5! = 120 số

Trong mỗi hàng do các số có khả năng xuất hiện như nhau nên mỗi số xuất hiện 120:5=24 lần

⇒ S= 9333240

21 tháng 8 2018

Đáp án C

Số phần tử của tập S là 5! = 120 số.

Mỗi số 5, 6, 7, 8, 9 có vai trò như nhau và xuất hiện ở hàng đơn vị 4! = 24 lần

Tổng các chữ số xuất hiện ở hàng đơn vị là 4!.(5 + 6 + 7 + 8 + 9) = 840

Tương tự với các chữ số hàng chục, hàng tram, hàng nghìn và hàng chục nghìn.

Vậy tổng tất cả các số thuộc tập S là 840.(104+103+102+10+1) = 9333240

9 tháng 6 2018

Đặt A = {1, 2, 3, 4, 5, 6}.

n(A) = 6.

Việc lập các số tự nhiên có 6 chữ số khác nhau là việc sắp xếp thứ tự 6 chữ số của tập A. Mỗi số là một hoán vị của 6 phần tử đó

⇒ Có P 6   =   6 !   =   6 . 5 . 4 . 3 . 2 . 1   =   720 số thỏa mãn

Vậy có 720 số thỏa mãn đầu bài.

26 tháng 1 2023

Chọn số 1 là hàng chục nghìn thì có \(A_5^4\) cách tạo thành số có 5 chữ số khác nhau

Tương tự ta cũng có \(A_5^4\) cách khi 1 đứng ở hàng nghìn, trăm, chục, đơn vị

⇒ Tổng chữ số 1 dùng để lập các số có 5 chữ số là\(A_5^4\) *11111

Tương tự cũng có tổng chữ số 3,4,5,7,8 dùng để lập các số có 5 chữ số là  \(A_5^4\)*33333, \(A_5^4\)*44444,\(A_5^4\)*55555,\(A_5^4\)*77777, \(A_5^4\)*88888

⇒ Tổng của các số đã lập được là \(A_5^4\)*11111*(1+3+4+5+7+8)=37332960

NV
27 tháng 2 2023

Tạo số có 4 chữ số bất kì (bao gồm 0 đứng đầu): \(A_5^4=120\) số

Tạo số có 4 chữ số sao cho số 0 đứng đầu (giống như tạo số có 3 chữ số từ các số 1,2,3,4) có \(A_4^3=24\) số

Bây giờ lấy tổng trường hợp 1 trừ tổng trường hợp 2 là ra kết quả cần tìm.

Để dễ hình dung ta gọi số ở TH đầu là abcd, vai trò của các chữ số như nhau, mà ta có thể tạo ra 120 số như vậy, do đó, mỗi vị trí một chữ số sẽ xuất hiện \(120:5=24\) lần

Cụ thể với chữ số 4 đi, theo lý luận bên trên số 4 xuất hiện ở hàng ngàn là 24 lần, hàng trăm 24 lần, hàng chục 24 lần, hàng đơn vị 24 lần, do đó tổng giá trị của chữ số 4 là:

\(24.4.1000+24.4.100+24.4.10+24.4.1=24.4.1111\)

Tương tự với các chữ số khác, ta được tổng của trường hợp đầu là:

\(24.4.1111+24.3.1111+24.2.1111+24.1.1111+24.0.1111=266640\)

- Với trường hợp 2, y hệt như trên, mỗi chữ số xuất hiện ở 1 vị trí \(\dfrac{24}{4}=6\) lần

Do đó tổng các chữ số ở TH này là:

\(6.4.111+6.3.111+6.2.111+6.1.111=6660\)

Kết quả: \(266640-6660=259980\)

19 tháng 8 2019

NV
21 tháng 12 2022

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

21 tháng 12 2022

cho e hỏi chữ "A" bấm máy sao