Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)
\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)
b/
\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)
\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)
c/
\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)
Bài 2 :
\(B=2014\cdot2020\)
\(B=\left(2017-3\right)\left(2017+3\right)\)
\(B=2017^2-3^2\)
\(B=2017^2-9< A=2017^2\)
Vậy \(B< A\)
\(B=2014.2020\)
\(B=\left(2017-3\right)\left(2017+3\right)\)
\(B=\left(2017-3\right).2017+\left(2017+3\right).3\)
\(B=2017^2-3.2017+2017.3+3^2\)
\(B=2017^2-3^2< 2017^2=A\)
Vậy A > B
_Hok tốt_
!!!
A=1(2+1)+2(3+1)+3(4+1)+...+99(100 +1 )
A=1.2+1+2.3+2+3.4+3...99.100+99
A=(1.2+2.3+3.4+...99.100)+(1+2+3+4...99)
giải:
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
\(\frac{2.9.8+3.12.10+4.15.12+...+98.297.200}{2.3.4+3.4.5+4.5.6+...+98.99.100}=\frac{3.2.\left(2.3.4+3.4.5+4.5.6+...+98.99.100\right)}{2.3.4+3.4.5+4.5.6+...+98.99.100}=6\)
<=> -12x+60+21-7x=5
<=> 12x+7x=60+21-5
<=> 19x=76
=> x=76:19
=> x=4
làm tiếp theo
\(S=\frac{5}{2}.\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}+\frac{2}{99.100.101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{98.99}-\frac{1}{99.100}+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{100.101}\right)\)
còn lại tự làm
\(S=\frac{5}{2\cdot3\cdot4}+\frac{5}{3\cdot4\cdot5}+......+\frac{5}{99\cdot100\cdot101}\)
\(S\frac{2}{5}=\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+.....+\frac{2}{99\cdot100\cdot101}\)
\(\frac{2}{2\cdot3\cdot4}=\frac{1}{2\cdot3}-\frac{1}{3\cdot4}\)
\(\frac{2}{3\cdot4\cdot5}=\frac{1}{3\cdot4}-\frac{1}{4\cdot5}\)
.............
\(\frac{2}{99\cdot100\cdot101}=\frac{1}{99\cdot100}-\frac{1}{100\cdot101}\)
\(\Rightarrow S\frac{2}{5}=\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+.........+\frac{1}{99\cdot100}-\frac{1}{100\cdot101}\)
\(\Rightarrow S\frac{2}{5}=\frac{1}{2\cdot3}-\frac{1}{100\cdot101}\)
\(\Rightarrow S\frac{2}{5}=\frac{1}{6}-\frac{1}{10100}\)
\(\Rightarrow S\frac{2}{5}=\frac{5047}{30300}\)
\(\Rightarrow S=\frac{5047}{30300}:\frac{2}{5}\)
\(\Rightarrow S=\frac{5047}{30300}\cdot\frac{5}{2}\)
\(\Rightarrow S=\frac{5047}{12120}\)
\(S=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(S=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{100.101}\right)\)
\(S=\frac{5}{2}.\left(\frac{5047}{30300}\right)\Rightarrow S=\frac{5047}{12120}\)