\(S=\frac{3^2}{4}+\frac{3^2}{18}+\frac{3^2}{54}+\frac{3^2}{108}+\frac{3^2}{180}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(\frac{1}{3}-\left(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+\frac{1}{180}+\frac{1}{270}+\frac{1}{378}\right)\)

\(=\frac{1}{3}-\left(\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{12.15}+\frac{1}{15.18}+\frac{1}{18.21}\right)\)

\(=\frac{1}{3}-\left(\frac{1}{3}-\frac{1}{21}\right)\)

\(=\frac{1}{3}-\frac{1}{3}+\frac{1}{21}=\frac{1}{21}\)

2 tháng 8 2018

Đáp án là : \(\frac{5}{21}\)

16 tháng 8 2017

=\(\frac{85}{504}\)

16 tháng 8 2017

\(\frac{85}{504}\)

11 tháng 5 2018

A/B=1

11 tháng 5 2018

nghe là bt sai

11 tháng 5 2018

kết quả của phép tính là

    => 1 

nên bài này bằng 1

11 tháng 5 2018

tại sao kết quả phép tính =1

25 tháng 4 2017

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)

5 tháng 5 2019

Đặt \(S=\frac{A}{B}\)

Biến đổi B 

 \(B=\frac{108}{1}+\frac{107}{2}+...+\frac{1}{108}\)

\(=\left(\frac{108}{1}+1\right)+\left(\frac{107}{2}+1\right)+...+\left(\frac{1}{108}+1\right)-108\)

\(=109+\frac{109}{2}+...+\frac{109}{108}-108\)

\(=109+\frac{109}{2}+...+\frac{109}{108}+\frac{109}{109}-109\)

\(=109.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{109}\right)\)

\(\Rightarrow s=\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{109}}{109.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{109}\right)}=\frac{1}{109}\)

KO hiểu em hỏi nhé

5 tháng 5 2019

Em ko cần đặt \(S=\frac{A}{B}\)cũng được nhé tại vì anh có thói quen đặt