Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)
\(D=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{-3}{35}\right)+\dfrac{1}{41}\)
\(D=1+-1+\dfrac{1}{41}\)
\(D=0+\dfrac{1}{41}\)
\(D=\dfrac{1}{41}\)
\(C=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}+\dfrac{-1}{36}+\dfrac{-2}{9}\right)+\dfrac{1}{57}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-1-8}{36}+\dfrac{1}{57}\)
=1/57
\(E=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}=\dfrac{1}{127}\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
9) \(\dfrac{x}{4}=\dfrac{9}{x}\)
Theo định nghĩa về hai phân số bằng nhau, ta có:
\(4\cdot9=x^2\\ 36=x^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
8)
\(x:\dfrac{5}{3}+\dfrac{1}{3}=-\dfrac{2}{5}\\ x:\dfrac{5}{3}=-\dfrac{2}{5}+\dfrac{1}{3}\\ x:\dfrac{5}{3}=-\dfrac{1}{15}\\ x=\dfrac{1}{15}\cdot\dfrac{5}{3}\\ x=\dfrac{1}{9}\)
7)
\(2x-16=40+x\\ 2x-x=40+16\\ x\left(2-1\right)=56\\ x=56\)
6)
\(1\dfrac{1}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}-\dfrac{3}{2}=-7-x\\ -7-x=0\\ x=-7-0\\ x=-7\)
5)
\(3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{7}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{7}{2}-\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{17}{6}\\ x=\dfrac{17}{6}:\dfrac{1}{2}\\ x=\dfrac{17}{3}\)
4)
\(x\cdot\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
3)
\(\left(\dfrac{2x}{5}+2\right):\left(-4\right)=-1\dfrac{1}{2}\\ \left(\dfrac{2x}{5}+2\right):\left(-4\right)=-\dfrac{3}{2}\\ \dfrac{2x}{5}+2=-\dfrac{3}{2}\cdot\left(-4\right)\\ \dfrac{2x}{5}+2=6\\ \dfrac{2x}{5}=6-2\\ \dfrac{2x}{5}=4\\ 2x=4\cdot5\\ 2x=20\\ x=20:2\\ x=10\)
2)
\(\dfrac{1}{3}+\dfrac{1}{2}:x=-0,25\\ \dfrac{1}{3}+\dfrac{1}{2}:x=-\dfrac{1}{4}\\ \dfrac{1}{2}:x=-\dfrac{1}{4}-\dfrac{1}{3}\\ \dfrac{1}{2}:x=-\dfrac{7}{12}\\ x=\dfrac{1}{2}:-\dfrac{7}{12}\\ x=-\dfrac{6}{7}\)
1)
\(\dfrac{4}{3}+x=\dfrac{2}{15}\\ x=\dfrac{2}{15}-\dfrac{4}{3}x=-\dfrac{6}{5}\)
Bạn viết đề bài vào , mình ko biết đề bài ( mình giải luôn )
= \(\dfrac{\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}}{2\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}\right)}\)\(-\dfrac{4\left(\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{3\left(\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{11}+\dfrac{2}{11}\right)}\)
= \(\dfrac{1}{2}-\dfrac{4}{3+\dfrac{2}{11}}\)
Bạn tự tính tiếp nha
Câu a :
Chưa nghĩ ra! Sorry nhé!!
Câu b :
Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến
Câu c :
Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến
Vào link đó mà xem, t ngại chép lại
2)
\(D=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3+1}{3}+\dfrac{3^2+1}{3^2}+\dfrac{3^3+1}{3^3}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3}{3}+\dfrac{1}{3}+\dfrac{3^2}{3^2}+\dfrac{1}{3^2}+\dfrac{3^3}{3^3}+\dfrac{1}{3^3}+...+\dfrac{3^{98}}{3^{98}}+\dfrac{1}{3^{98}}\\ D=1+\dfrac{1}{3}+1+\dfrac{1}{3^2}+1+\dfrac{1}{3^3}+...+1+\dfrac{1}{3^{98}}\\ D=\left(1+1+1+...+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ D=98+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\)
Gọi \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\) là \(C\)
\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\\ 3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\\ 3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ 2C=1-\dfrac{1}{3^{98}}\\ C=\left(1-\dfrac{1}{3^{98}}\right):2\\ C=1:2-\dfrac{1}{3^{98}}:2\\ C=\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}\)
\(D=98+C=98+\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}=98\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}< 100\)
Vậy \(D< 100\)
a) \(-\dfrac{2}{3}x+\dfrac{1}{5}=\dfrac{3}{10}\)
\(-\dfrac{2}{3}x=\dfrac{3}{10}-\dfrac{1}{5}\)
\(-\dfrac{2}{3}x=\dfrac{1}{10}\)
x=\(\dfrac{1}{10}:-\dfrac{2}{3}\)
\(x=-\dfrac{3}{20}\)
Vậy \(x=-\dfrac{3}{20}\).
b) \(\dfrac{1}{3}+\dfrac{2}{3}:x=-7\)
\(\dfrac{2}{3}:x=-7-\dfrac{1}{3}\)
\(\dfrac{2}{3}:x=-\dfrac{22}{3}\)
\(x=\dfrac{2}{3}:-\dfrac{22}{3}\)
\(x=-\dfrac{1}{11}\)
Vậy \(x=-\dfrac{1}{11}\).
c) \(60\%x=\dfrac{1}{3}\cdot6\dfrac{1}{3}\)
\(60\%x=\dfrac{19}{9}\)
\(\dfrac{3}{5}x=\dfrac{19}{9}\)
\(x=\dfrac{19}{9}:\dfrac{3}{5}\)
\(x=\dfrac{95}{27}\)
Vậy \(x=\dfrac{95}{27}\).
d) \(\left(\dfrac{2}{3}-x\right):\dfrac{3}{4}=\dfrac{1}{5}\)
\(\dfrac{2}{3}-x=\dfrac{1}{5}\cdot\dfrac{3}{4}\)
\(\dfrac{2}{3}-x=\dfrac{3}{20}\)
\(x=\dfrac{2}{3}-\dfrac{3}{20}\)
\(x=\dfrac{31}{60}\)
Vậy \(x=\dfrac{31}{60}\).
e) \(-2x-\dfrac{-3}{5}:\left(-0.5\right)^2=-1\dfrac{1}{4}\)
\(-2x-\dfrac{-12}{5}=-1\dfrac{1}{4}\)
\(-2x=-1\dfrac{1}{4}+\dfrac{-12}{5}\)
\(-2x=-\dfrac{73}{20}\)
\(x=-\dfrac{73}{20}:\left(-2\right)\)
\(x=\dfrac{73}{40}\)
Vậy \(x=\dfrac{73}{40}\).
a: \(=\left(\dfrac{19}{6}-\dfrac{2}{5}\right):\left(\dfrac{29}{6}+\dfrac{7}{10}\right)\)
\(=\dfrac{19\cdot5-2\cdot6}{30}:\dfrac{290+42}{30}=\dfrac{83}{332}=\dfrac{1}{4}\)
b: \(=\dfrac{\left(\dfrac{102}{25}-\dfrac{2}{25}\right)\cdot\dfrac{17}{4}}{\left(6+\dfrac{5}{9}-3-\dfrac{1}{4}\right)\cdot\dfrac{16}{7}}\)
\(=\dfrac{4\cdot\dfrac{17}{4}}{\dfrac{16}{7}\cdot\dfrac{119}{36}}=\dfrac{17}{\dfrac{68}{9}}=17\cdot\dfrac{9}{68}=\dfrac{9}{4}\)
c: \(=\left(\dfrac{120}{60}-\dfrac{15}{60}+\dfrac{20}{60}-\dfrac{36}{60}\right):\left(\dfrac{45}{15}-\dfrac{3}{15}-\dfrac{25}{15}\right)\)
\(=\dfrac{89}{60}:\dfrac{17}{15}=\dfrac{89}{60}\cdot\dfrac{15}{17}=\dfrac{89}{68}\)
\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+................+\dfrac{1}{3^9}\)
\(\Rightarrow3S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+................+\dfrac{1}{3^8}\)
\(\Rightarrow3S-S=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+.............+\dfrac{1}{3^8}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+..........+\dfrac{1}{3^9}\right)\)
\(\Rightarrow2S=1-\dfrac{1}{3^9}\)
\(\Rightarrow S=\dfrac{1-\dfrac{1}{3^9}}{2}\)
Ta có : 3S = \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^8}\)
3S - S = \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^8}\) - \(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^9}\right)\)
2S = \(1-\dfrac{1}{3^9}=\dfrac{3^9-1}{3^9}\)
S = \(\dfrac{3^9-1}{2.3^9}\)