Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Đặt A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{50}}\)
⇒7A=\(\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{51}}\)
⇒7A-A=\(\frac{1}{7^{51}}-\frac{1}{7}\)
⇒6A=\(\frac{1}{7^{51}}-\frac{1}{7}\)⇒A=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)
⇒C=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)+\(\frac{1}{6.7^{50}}\)
=\(\frac{4}{3.7^{51}}-\frac{1}{42}\)
a)S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006
=>(7-1)S=6-(1/7)^2007
=>S=1-(-1/7^2007/6)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
M = 512 - 512/2 - .... - 512/2^10
= 2^9 - 2^9 / 2 - 2^9/2^2 - ...2^9/2^10
= 2^9 - 2^8 - 2^7 - 2^6 -.... - 1/2
2M = 2^10 - 2^9 - 2^8 - .... - 1
2M - M = 2^10 - 2^9 - 2^8 -... -1 - 2^9 + 2^8 + 2^7 +... + 1 + 1/2
M = 2^10 - 2.2^9 + 1/2
M = 2^10 - 2^10 + 1/2
M = 1/2
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow49A=1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n}}+..+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49A+A=50A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{50}=\frac{1}{50}-\frac{1}{7^{100}.50}< \frac{1}{50}\left(ĐPCM\right)\)
1. Thực hiện phép tính sau một cách hợp lí:
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)\(=\frac{3.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{5}{7}+\frac{1}{37}\right)}+\frac{-\left(-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}{7.\left(-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
RÕ RÀNG : \(\frac{1}{7}-\frac{5}{7}+\frac{1}{37}\ne0\);\(\frac{-1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\ne0\)
Do đó : \(A=\frac{3}{5}+\frac{-1}{7}=\frac{16}{35}\)
tik mik nha!!!!
\(7^50\) là cái gì????????
\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^5}\)
\(\Rightarrow7A=1+\frac{1}{7}+...+\frac{1}{7^4}\)
\(\Rightarrow7A-A=1-\frac{1}{7^5}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^5}}{6}\)