\(A=\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2022

Ta có:

\(A=\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}\)

\(A=\dfrac{3-2}{2\times3}+\dfrac{4-3}{3\times4}+\dfrac{5-4}{4\times5}+\dfrac{6-5}{5\times6}+\dfrac{7-6}{6\times7}+\dfrac{8-7}{7\times8}\)

\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

\(A=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)

Đs:....

 

 

 

1 tháng 7 2016

= 9/10

k nha

29 tháng 9 2018

\(6xy+\left(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{7x8}\right)=\frac{29}{8}\)

Đăt \(A=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{7x8}\)

\(\Rightarrow A=\frac{3-2}{2x3}+\frac{4-3}{3x4}+\frac{5-4}{4x5}+...+\frac{8-7}{7x8}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

\(\Rightarrow6xy+A=6xy+\frac{3}{8}=\frac{29}{8}\Rightarrow6xy=\frac{26}{8}\Rightarrow y=\frac{26}{8x6}\)

9 tháng 9 2017

\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)

\(\Rightarrow5A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow5A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}\right)\)

\(\Rightarrow5A=1-\frac{1}{8}\)

\(\Rightarrow A=\left(1-\frac{1}{8}\right).\frac{1}{5}=\frac{7}{40}\)

9 tháng 9 2017

\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)

\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{5}{7.8}\right)\)

\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=5\left(1-\frac{1}{8}\right)\)

\(A=5.\frac{7}{8}\)

\(A=\frac{38}{8}\)

27 tháng 8 2023

có ai giải được câu này không?

 

4 tháng 6 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

chúc bn học tốt

4 tháng 6 2019

\(1,27+2,77+4,27+5,77+...+31,27+32,47\)

\(=\left(1,27+32,77\right)+\left(2,77+31,27\right)+....+\left(16,27+17,77\right)\)

\(=34,04+34,04+....+34,04\)( 11 số hạng)

\(=34,04.11=374,44\)

chúc bn học tốt

30 tháng 1 2024

a; A = \(\dfrac{4026\times2014+4030}{2013\times2016-2011}\)

   A = \(\dfrac{2\times\left(2013\times2014+2015\right)}{2013\times2016-2011}\)

   A = \(\dfrac{2\times\left(2013\times2016-2013\times2+2015\right)}{2013\times2016-2011}\)

   A = \(\dfrac{2\times\left(2013\times2016-4026+2015\right)}{2013\times2016-2011}\)

  A = \(\dfrac{2\times\left(2013\times2016-2011\right)}{2013\times2016-2011}\)

 A = 2

=1-1/2+1/2-1/3+...+1/9-1/10

=1-1/10

=9/10

22 tháng 6 2021

/3/5<1   2/2=1     9/4>1   1>7/8

 
8 tháng 8 2021

<                 

=

>

>

19 tháng 9 2023

\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)+\left(\dfrac{5}{6}+\dfrac{19}{20}+...+\dfrac{2549}{2550}\right)\)

\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+..+\dfrac{1}{50\cdot51}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{50\cdot51}\right)\)

\(B=\left(1+1+...+1\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\)

\(B=1\cdot49=49\) (vì có (50 - 2) : 1 + 1 = 49 số hạng 1)

13 tháng 5 2023

=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007

=2008/12

=502/3

13 tháng 5 2023

A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)

A = ( 1 + \(\dfrac{1}{12}\)\(\times\) ( 1 + \(\dfrac{1}{13}\)\(\times\) ( 1 + \(\dfrac{1}{14}\)\(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))

A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)

A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)

A = 1 \(\times\) \(\dfrac{502}{3}\)

A = \(\dfrac{502}{3}\)