Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(S=1+4+4^2+...+4^{100}\)
\(\Rightarrow4S=4+4^2+4^3+...+4^{101}\)
\(\Leftrightarrow4S-S=\left(4+4^2+...+4^{101}\right)-\left(1+4+4^2+...+4^{100}\right)\)
\(\Leftrightarrow3S=4^{101}-1\)
\(\Rightarrow S=\frac{4^{101}-1}{3}\)
b) Tương tự phần a ta tính được: \(A=\frac{5^{97}-5}{4}\)
Ta có: \(5^{97}-5=\overline{...5}-5=\overline{...0}\)
Đến đây thì A sẽ có cstc là 0 hoặc 4
a) S = 1 + 4 + 42 + 43 + ... + 4100
=> 4S = 4( 1 + 4 + 42 + 43 + ... + 4100 )
= 4 + 42 + 43 + ... + 4101
=> 4S - S = 3S
= 4 + 42 + 43 + ... + 4101 - ( 1 + 4 + 42 + 43 + ... + 4100 )
= 4 + 42 + 43 + ... + 4101 - 1 - 4 - 42 - 43 - ... - 4100
= 4101 - 1
=> S = (4101 - 1 )/3
b) A = 5 + 52 + 53 + ... + 596
= ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 595 + 596 )
= 30 + 52( 5 + 52 ) + ... + 594( 5 + 52 )
= 30 + 52.30 + ... + 594.30
= 30( 1 + 52 + ... + 594 ) chia hết cho 10 ( vì 30 chia hết cho 10 )
=> A có tận cùng là 0
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
a) \(S=1+2+2^2+2^3+...+2^{2022}=\dfrac{2^{2022+1}-1}{2-1}=2^{2023}-1\)
b) \(S=1+4+4^2+4^3+...+4^{2022}=\dfrac{4^{2022+1}-1}{4-1}=\dfrac{4^{2023}-1}{3}\)
\(S=1+2+2^2+2^3+...+2^{2022}\\ 2S=2+2^2+2^3+2^4+...+2^{2023}\\ 2S-S=2+2^2+2^3+2^4+...+2^{2023}-1-2-2^2-2^3-...-2^{2022}\\ S=2^{2023}-1\\ S=4+4^2+4^3+...+4^{2022}\\ 4S=4^2+4^3+4^4+...+4^{2023}\\ 4S-S=4^2+4^3+4^4+...+4^{2023}-4-4^2-4^3-...-4^{2023}\\ 3S=4^{2023}-4\\ S=\dfrac{4^{2023}-4}{3}\)