\(\frac{3}{2}\)+\(\frac{3}{2^2}\)+...+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)

11 tháng 4 2017

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Leftrightarrow S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

- Đặt  \(D=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(\Leftrightarrow\frac{1}{2}D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Leftrightarrow\frac{1}{2}D-D=\frac{1}{2^{10}}-1\)

\(\Leftrightarrow D=\frac{\frac{1}{2^{10}}-1}{-\frac{1}{2}}\)

Vậy \(3.D=3.\left(\frac{\frac{1}{2^{10}}-1}{-\frac{1}{2}}\right)=3.\frac{1023}{512}=\frac{3069}{512}\)

11 tháng 4 2017

Ta có: \(\frac{1}{2}S=\frac{1}{2}.\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\))

=\(\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^{10}}\)

=> \(S-\frac{1}{2}S=\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)-\left(\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^{10}}\right)\)

=> \(\frac{1}{2}S=3-\frac{3}{2^{10}}\)

=>\(S=\left(3-\frac{3}{2^{10}}\right).2=6-\frac{6}{2^{10}}=6-\frac{3}{2^9}\)

4 tháng 5 2018

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Rightarrow S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

\(\Rightarrow A=2-\frac{1}{2^9}\)

Mà \(S=3.A\)

\(\Rightarrow S=3.\left(2-\frac{1}{2^9}\right)\)

\(\Rightarrow S=6-\frac{3}{2^9}\)

Chúc bạn học tốt !!! 

4 tháng 5 2018

Thanks bạn

9 tháng 5 2016

\(S=3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\)

\(\Rightarrow2S=6+3+\frac{3}{2}+....+\frac{3}{2^8}\)

\(\Rightarrow2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\right)\)

\(\Rightarrow S=6-\frac{3}{2^9}=\frac{3069}{512}\)

9 tháng 5 2016

\(2S=2\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}\)

tới đây thì bn tự tính nhé

10 tháng 7 2018

a ) 

\(\frac{-4}{9}.\frac{1}{3}-\frac{4}{9}.\frac{5}{6}+\frac{3}{7}.\frac{4}{9}\)

\(=\frac{4}{9}.\left(-\frac{1}{3}-\frac{5}{6}+\frac{3}{7}\right)\)

\(=\frac{4}{9}.\left(-\frac{14}{42}-\frac{35}{42}+\frac{18}{42}\right)\)

\(=\frac{4}{9}.\frac{-31}{42}\)

\(=-\frac{62}{189}\)

b ) 

\(\frac{2}{3}:\frac{3}{7}-\frac{2}{3}:\frac{4}{3}+\frac{2}{3}:\frac{1}{21}\)

\(=\frac{2}{3}.\frac{7}{3}-\frac{2}{3}.\frac{3}{4}+\frac{2}{3}.21\)

\(=\frac{14}{9}-\frac{1}{2}+14\)

\(=\frac{28}{18}-\frac{9}{18}+14\)

\(=\frac{19}{18}+14\)

\(=1+14+\frac{1}{18}\)

\(=15\frac{1}{18}\)

c ) 

\(\left(5\frac{1}{3}+3\frac{2}{3}\right)-4\frac{1}{3}\)

\(=\left(5+3-4\right)+\left(\frac{1}{3}+\frac{2}{3}-\frac{1}{3}\right)\)

\(=4\frac{2}{3}\)

\(=\frac{14}{3}\)

10 tháng 7 2018

a) \(-\frac{4}{9}\cdot\frac{1}{3}-\frac{4}{9}\cdot\frac{5}{6}+\frac{3}{7}\cdot\frac{4}{9}\)

\(=\left(-\frac{4}{9}\right)\cdot\frac{1}{3}+\left(-\frac{4}{9}\right)\cdot\frac{5}{6}-\left(-\frac{4}{9}\right)\cdot\frac{3}{7}\)

\(=\left(-\frac{4}{9}\right)\left(\frac{1}{3}+\frac{5}{6}-\frac{3}{7}\right)\)

\(=\left(-\frac{4}{9}\right)\cdot\frac{31}{42}=-\frac{62}{189}\)

24 tháng 3 2018

a)Ta có: \(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)

\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)

... . . . .

\(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)

\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}< 1^{\left(đpcm\right)}\)

b) Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

   \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

Suy ra \(\frac{2}{5}< S\) (1)

Ta lại có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)

Từ đó suy ra S < 8/9

Từ (1) và (2) suy ra đpcm

16 tháng 5 2018

   \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

=>\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)

=>\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)

=>\(S=1-\frac{1}{2^9}=\frac{511}{512}\)

Vậy \(S=\frac{511}{512}\)

Ta có : \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^9}\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^8}\)

\(\Rightarrow2S-S=1-\frac{1}{2^9}\)

\(\Leftrightarrow S=1-\frac{1}{2^9}\)