Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=3/2^0+3/2^1+....+3/2^2018
S=3/2.(2/2^0+2/2^1+....+2^2018)
đặt B=2/2^0+2/2^1+....+2^2018
2B=2.(2/2^0+2/2^1+....+2^2018)
2B=1+2/2^0+...+2/2^2017
2B-B=(1+2/2^0+...+2/2^2017)-(2/2^0+2/2^1+....+2^2018)
B=1-2^2018
S=3/2.1-2^2018=3/2^2018
\(S=3+\dfrac{3}{2}+\dfrac{3}{3^2}+...+\dfrac{3}{2^9}\)
Vầy hả bn? Mk thấy khó hiểu quá?
Ta có:
a) \(S=2^3+2^5+2^7+...+2^{25}\)
\(\Rightarrow2^2\cdot S=2^2\cdot\left(2^3+2^5+2^7+...+2^{25}\right)\)
\(\Rightarrow4\cdot S=2^5+2^7+2^9+...+2^{27}\)
\(\Rightarrow4\cdot S-S=\left(2^5+2^7+2^9+...+2^{27}\right)-\left(2^3+2^5+2^7+...+2^{25}\right)\)
\(\Rightarrow3\cdot S=2^{27}-2^3\)
\(\Rightarrow S=\frac{2^{27}-2^3}{3}\)
b) \(S=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3\cdot S=3\cdot\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3\cdot S=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3\cdot S-S=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2\cdot S=3^{101}-3\)
\(\Rightarrow S=\frac{3^{101}-3}{2}\)
Ta có: \(\dfrac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\dfrac{101+\left(100+1\right)\cdot50}{101-\left[100-99+98-97+...+2-1\right]}\)
\(=\dfrac{101\cdot51}{101-1\cdot50}\)
\(=\dfrac{101\cdot51}{101-50}=101\)
\(-\dfrac{2}{3}=\dfrac{x}{-6}\Rightarrow x=\left(-\dfrac{2}{3}\right)\left(-6\right)=4\)
\(-\dfrac{2}{3}=\dfrac{10}{-y}\Rightarrow y=\left(-10\right):\left(-\dfrac{2}{3}\right)=15\)
\(-\dfrac{2}{3}=\dfrac{z}{9}\Rightarrow z=\left(-\dfrac{2}{3}\right).9=-6\)
\(\dfrac{-2}{3}=\dfrac{x}{-6}=\dfrac{10}{-y}=\dfrac{z}{9}\)
\(x=\left(-6.-2\right):3=4;y=\left(-6.10\right):-4=15;z=\left(10.9\right):-15=-6\)
Số lớn chiếm số phần là:
(3 + 1) : 2 = 2(phần)
Số bé chiếm số phần là:
3 - 2 = 1(phần)
Thương 2 số đó là:
2 : 1 = 2
\(S=3+\frac{3}{2}+...+\frac{3}{2^9}\)
\(\Rightarrow S=3.\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)\)
Đặt \(A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(\Rightarrow2A=2+1+...+\frac{1}{2^8}\)
\(\Rightarrow2A-A=\left(2+1+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow A=2-\frac{1}{2^9}\)
Lại có :
\(S=3.A\)
\(\Rightarrow S=3.\left(2-\frac{1}{2^9}\right)\)
\(\Rightarrow S=6-\frac{3}{2^9}\)
Vậy \(S=6-\frac{3}{2^9}\)
Chúc bạn học tốt !!!
thak you very much