Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((6-4\frac{1}{2}):0,03+(3\frac{1}{20}-2,65):4+\frac{2}{5}\)
\((6-4,5):0,03+(3,05-2,65):4+0,4\)
\(=1,5:0,03+0,4:4+0,4\)
\(=50+(0,4\cdot2):4\)
\(=50+0,2\)
\(=50,2\)
Chúc bạn học tốt
đơn giản :
A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+........+\(\frac{1}{99.100}\)
A= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
A=1 - \(\frac{1}{100}\)
A= \(\frac{99}{100}\)
CÓ AI DÙNG HỌC 24 GIỜ KO
A = 1/2 + 1/6 / + 1/ 12 + 1/20 + ......+ 1/(99.100)
A= 1/ ( 1 x 2 ) + 1/ ( 2 x 3 ) + 1 / ( 3 x 4 ) + .....+ 1/ ( 99 x 100 )
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .................+ 1/99 - 1/100
A= 1 - 1/100
A= 99/100
CHÚC BẠN HỌC TỐT
\(A=1\frac{1}{10}+2\frac{2}{10}+...+9\frac{9}{10}\)
\(\Leftrightarrow A=\frac{11}{10}+\frac{22}{10}+...+\frac{99}{10}\)
\(\Leftrightarrow A=\frac{11+22+...+88+99}{10}\)
\(\Leftrightarrow A=\frac{\left(99+11\right).9}{20}\)
\(\Leftrightarrow A=\frac{990}{20}\)
\(\Leftrightarrow A=49,5\)
1. \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}\)
\(=\frac{42}{43}\)
2. Đặt \(A=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{90}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(1-\frac{1}{10}\right)\)
\(=2.\frac{9}{10}\)
\(=\frac{9}{5}\)
Ủng hộ mk nha !!! ^_^
1) 3/1×4 + 3/4×7 + 3/7×10 + ... + 3/40×43
= 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/40 - 1/43
= 1 - 1/43
= 42/43
2) 2/2 + 2/6 + 2/12 + ... + 2/90
= 2 × (1/2 + 1/6 + 1/12 + ... + 1/90)
= 2 × (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/9×10)
= 2 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10)
= 2 × (1 - 1/10)
= 2 × 9/10
= 9/5
\(A=\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
Tổng trên có số số hạng là: \(\left(90-32\right)\div1+1=59\)
\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
\(>\frac{1}{45}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\left(\frac{1}{90}+\frac{1}{90}\right)+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\frac{60}{90}=\frac{2}{3}\)
1/3xD=1/(2x4)+1/(4x6)+...+1/(98x100)
2/3xD=2/(2x4)+2/(4x6)+...+1/(98x100)
2/3xD= 1/2-1/4+1/4-1/6+...+1/98-1/100
2/3xD=1/2-1/100
2/3xD=49/100
D=147/200
S=1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+10)
S=1/(2*3/2)+1/(3*4/2)+1/(4*5/2)+...+1/(10*11/2)
S=2(1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+...+1/(10*11)
S=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/10-1/11)
S=2(1/2-1/11)
S=2*9/22
S=9/11
nho k cho minh voi nha
Ta có : \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=\frac{81}{10}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)
\(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(S=1-\frac{1}{10}\)
\(S=\frac{9}{10}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(S=1-\frac{1}{10}\)
\(S=\frac{9}{10}\)