K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)

\(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(S=1-\frac{1}{10}\)

\(S=\frac{9}{10}\)

31 tháng 7 2017

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(S=1-\frac{1}{10}\)

\(S=\frac{9}{10}\)

7 tháng 6 2018

\((6-4\frac{1}{2}):0,03+(3\frac{1}{20}-2,65):4+\frac{2}{5}\)

\((6-4,5):0,03+(3,05-2,65):4+0,4\)

\(=1,5:0,03+0,4:4+0,4\)

\(=50+(0,4\cdot2):4\)

\(=50+0,2\)

\(=50,2\)

Chúc bạn học tốt

3 tháng 4 2017

Số bé : 880

Số lớn : 1130

3 tháng 4 2017

số bé:

=880

số lớn:

=1130

26 tháng 7 2017

đơn giản :

A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+........+\(\frac{1}{99.100}\)

A= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

A=1 - \(\frac{1}{100}\)

A= \(\frac{99}{100}\)

CÓ AI DÙNG HỌC 24 GIỜ KO

26 tháng 7 2017

A = 1/2 + 1/6 / + 1/ 12 + 1/20 + ......+ 1/(99.100)

A= 1/ ( 1 x 2 ) + 1/ ( 2 x 3 ) + 1 / ( 3 x 4 ) + .....+ 1/ ( 99 x 100 )

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .................+ 1/99 - 1/100

A= 1 - 1/100 

A=    99/100

CHÚC BẠN HỌC TỐT 

9 tháng 1 2019

\(A=1\frac{1}{10}+2\frac{2}{10}+...+9\frac{9}{10}\)

\(\Leftrightarrow A=\frac{11}{10}+\frac{22}{10}+...+\frac{99}{10}\)

\(\Leftrightarrow A=\frac{11+22+...+88+99}{10}\)

\(\Leftrightarrow A=\frac{\left(99+11\right).9}{20}\)

\(\Leftrightarrow A=\frac{990}{20}\)

\(\Leftrightarrow A=49,5\)

21 tháng 7 2016

1.      \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=1-\frac{1}{43}\)

\(=\frac{42}{43}\)

2.     Đặt \(A=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{90}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=2.\left(1-\frac{1}{10}\right)\)

\(=2.\frac{9}{10}\)

\(=\frac{9}{5}\)

Ủng hộ mk nha !!! ^_^

21 tháng 7 2016

1) 3/1×4 + 3/4×7 + 3/7×10 + ... + 3/40×43

= 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/40 - 1/43

= 1 - 1/43

= 42/43

2) 2/2 + 2/6 + 2/12 + ... + 2/90

= 2 × (1/2 + 1/6 + 1/12 + ... + 1/90)

= 2 × (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/9×10)

= 2 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10)

= 2 × (1 - 1/10)

= 2 × 9/10

= 9/5

DD
20 tháng 9 2021

\(A=\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)

Tổng trên có số số hạng là: \(\left(90-32\right)\div1+1=59\)

\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)

\(>\frac{1}{45}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)

\(=\left(\frac{1}{90}+\frac{1}{90}\right)+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)

\(=\frac{60}{90}=\frac{2}{3}\)

20 tháng 9 2021

Đoàn Đức Hà:  Tại sao dòng số 4 phân số đầu tiên lại là \(\frac{1}{45}\)ạ?

23 tháng 6 2017

1/3xD=1/(2x4)+1/(4x6)+...+1/(98x100)
2/3xD=2/(2x4)+2/(4x6)+...+1/(98x100)
2/3xD= 1/2-1/4+1/4-1/6+...+1/98-1/100
2/3xD=1/2-1/100
2/3xD=49/100
D=147/200

 

23 tháng 6 2017

A=1/2+1/3+1/6+1/12
A=(1/2+1/3+1/6)+1/12
A=1+1/12
A=13/12

30 tháng 5 2017

qua de dang nhe

30 tháng 5 2017

S=1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+10)

S=1/(2*3/2)+1/(3*4/2)+1/(4*5/2)+...+1/(10*11/2)

S=2(1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+...+1/(10*11)

S=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/10-1/11)

S=2(1/2-1/11)

S=2*9/22

S=9/11

nho k cho minh voi nha

28 tháng 2 2020

Ta có : \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{89}{90}\)

\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+...+1-\frac{1}{90}\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=\frac{81}{10}\)