\(3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}\)

Gấp,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

Mk chỉ làm đc bài 2 thôi!

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Rightarrow2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(\Rightarrow2S-S=6-\frac{3}{2^9}\)

\(\Rightarrow S=6-\frac{3}{2^9}\)

Chúc bạn học tốt ( sai thì đừng ném đá ) !

29 tháng 4 2018

Ta có :

A = \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}\)\(\frac{1}{1.1}+\frac{1}{1.2}+...+\frac{1}{49.50}\)

A < \(1-1+1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)

A < 1 - 1/50 = 49/50 < 2

Vậy A < 2

S= - 32\(\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{868}\right)\)

S = - 32\(\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{28.31}\right)\)

S = - 3\(\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{28.31}\right)\)

S = -3\(\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{28}-\frac{1}{31}\right)\)

S = -3 \(\left(1-\frac{1}{31}\right)\)

S = -3\(.\frac{30}{31}\)

S = -90/31

26 tháng 4 2017

1/3S=-(1/1*4+1/4*7+1/7*10+...+1/28*31)=-(1/1-1/4+1/4-1/7+1/7-1/10+...+1/28-1/31)=-(1/1-1/31)=-30/31

=>S=(-30/31):1/3=-90/31

25 tháng 4 2017

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)

11 tháng 4 2017

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Leftrightarrow S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

- Đặt  \(D=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(\Leftrightarrow\frac{1}{2}D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Leftrightarrow\frac{1}{2}D-D=\frac{1}{2^{10}}-1\)

\(\Leftrightarrow D=\frac{\frac{1}{2^{10}}-1}{-\frac{1}{2}}\)

Vậy \(3.D=3.\left(\frac{\frac{1}{2^{10}}-1}{-\frac{1}{2}}\right)=3.\frac{1023}{512}=\frac{3069}{512}\)

11 tháng 4 2017

Ta có: \(\frac{1}{2}S=\frac{1}{2}.\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\))

=\(\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^{10}}\)

=> \(S-\frac{1}{2}S=\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)-\left(\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^{10}}\right)\)

=> \(\frac{1}{2}S=3-\frac{3}{2^{10}}\)

=>\(S=\left(3-\frac{3}{2^{10}}\right).2=6-\frac{6}{2^{10}}=6-\frac{3}{2^9}\)

13 tháng 8 2018

Xét TH1 : ( S < 8/9 )

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2};\frac{1}{3\cdot3}< \frac{1}{2\cdot3};...;\frac{1}{9\cdot9}< \frac{1}{8\cdot9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)

hay \(S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)

\(S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(S< 1-\frac{1}{9}=\frac{8}{9}\left(1\right)\)

TH2 : ( S > 2/5 )

\(\frac{1}{2\cdot2}>\frac{1}{2\cdot3};\frac{1}{3\cdot3}>\frac{1}{3\cdot4};...;\frac{1}{9\cdot9}>\frac{1}{9\cdot10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

hay \(S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(S>\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\left(2\right)\)

Từ (1) và (2) => đpcm

Ko tk thì ko phải là ng` nx rồi :)

6 tháng 5 2018

S=3/2^0+3/2^1+....+3/2^2018

S=3/2.(2/2^0+2/2^1+....+2^2018)

đặt B=2/2^0+2/2^1+....+2^2018

2B=2.(2/2^0+2/2^1+....+2^2018)

2B=1+2/2^0+...+2/2^2017

2B-B=(1+2/2^0+...+2/2^2017)-(2/2^0+2/2^1+....+2^2018)

B=1-2^2018

S=3/2.1-2^2018=3/2^2018

6 tháng 5 2018

B=2^2018-1 nha mink làm lộn

4 tháng 5 2018

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Rightarrow S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

\(\Rightarrow A=2-\frac{1}{2^9}\)

Mà \(S=3.A\)

\(\Rightarrow S=3.\left(2-\frac{1}{2^9}\right)\)

\(\Rightarrow S=6-\frac{3}{2^9}\)

Chúc bạn học tốt !!! 

4 tháng 5 2018

Thanks bạn

20 tháng 3 2018

Ta có : 

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}\)

\(S=\frac{2^{10}.3-3}{2^9}\)

Vậy \(S=\frac{2^{10}.3-3}{2^9}\)

20 tháng 3 2018

vận dụng 3S lên

xong tìm S nha bn ok

tại k có thời gian nên chỉ giúp thế thôi