\(\frac{3^{n-1}+1}{2}\)(n\(\in\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2020

\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)

\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)

\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)

\(S_1=1+1+1+...+n=n\)

\(S_2=3+9+...+3^n\)

\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)

\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)

9 tháng 4 2017

ko bít

4 tháng 5 2017

Bài này dễ ,lớp 6 còn làm đc!

3 tháng 3 2016

Có 1 = \(\frac{3^0+1}{2}\)

2 = \(\frac{3^1+1}{2}\)

5 = \(\frac{3^2+1}{2}\)

14 = \(\frac{3^3+1}{2}\)

.......

=> S = \(\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+\frac{3^3+1}{2}+...+\frac{3^{n-1}+1}{2}\)

S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)

S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+1.n}{2}\)

S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+n}{2}\)

Đặt A = 30 + 31 + 32 + 33 +....+ 3n-1 

=> 3A = 31 + 32 + 33 +....+ 3n

=> 2A = 3A - A = 3n - 30

=> A = \(\frac{3^n-1}{2}\)

Thay A vào S, ta có:

S = \(\frac{\frac{3^n-1}{2}+n}{2}\)

=> S = \(\frac{3^n-1}{4}+\frac{n}{2}\)

6 tháng 3 2016

Hồ Thu Giang à, trong 4 đáp án ở bài Cóc vàng tài ba đó ko có cái này !

24 tháng 12 2015

áp dụng quy tắc 

số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1

Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

22 tháng 5 2017

Câu 1 có sai đề bài không đấy?

22 tháng 5 2017

Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)

                   \(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)

                       \(=6^2.1771=36.1771=63756\)

3 tháng 11 2018

Đặt \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)

\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\right)\)

\(A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(A=\frac{7}{4}-\frac{100}{2^{100}}+\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)

Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(2B=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)

\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)

\(B=\frac{1}{2^2}-\frac{1}{2^{99}}\)

\(\Rightarrow\)\(A=\frac{7}{4}-\frac{100}{2^{100}}+B=\frac{7}{4}-\frac{100}{2^{100}}+\frac{1}{2^2}-\frac{1}{2^{99}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=\frac{2^{101}-102}{2^{100}}\)

Vậy \(A=\frac{2^{101}-102}{2^{100}}\)

Chúc bạn học tốt ~ 

3 tháng 11 2018

Thank you very much !

14 tháng 9 2020

ko bt làm thì xuống lớp 6 hocj đi

Bạn 12345678901 xuống lớp 1 học đạo đức làm người nhé bạn. Lịch sự tí đi