Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2S=2.(22 + 23 + 24+ ... + 22017 + 22018)
2S=23 + 24+ ... + 22017 + 22018+22019
S=23 + 24+ ... + 22017 + 22018+22019-22 + 23 + 24+ ... + 22017 + 22018
S=22019-22
Vì đề con viết thiếu nên cô đã sửa nhé.
Ta có \(S=1-2+2^2-2^3+...-2^{2017}\)
\(\Rightarrow4S=2^2.S=2^2\left(1-2+2^2-2^3+...-2^{2017}\right)\)
\(\Rightarrow4S=2^2-2^3+2^4-2^5+...-2^{2017}+2^{2018}-2^{2019}\)
\(\Rightarrow4S=S+1+2^{2018}-2^{2019}\)
\(\Rightarrow3S=1+2^{2018}-2^{2019}\)
\(\Rightarrow M=3S-2^{2018}=1-2^{2019}\)
1 Ta có: 201810 + 20189 = 20189.(2018 + 1) = 20189. 2019
201710 = 20179.2017
=> 201810 + 20189 > 201710
2. A = 1 + 2 + 22 + 23 + ... + 2100
2A = 2(1 + 2 + 22 + 23 + ... + 2100)
2A = 2 + 22 + 23 + ... + 2101
2A - A = (2 + 22 + 23 + ... + 2101) - (1 + 2 + 22 +. ... + 2100)
A = 2101 - 1
B = 1 + 6 + 11 + 16 + ... + 51
B = (51 + 1)[(51 - 1) : 5 + 1] : 2
B = 52. 11 : 2
B = 286
\(M=\left(2018+2018^2\right)+\left(2018^3+2018^4\right)+...+\left(2018^{2017}+2018^{2018}\right)\)
\(=2018\left(1+2018\right)+2018^3\left(1+2018\right)+...+2018^{2017}\left(1+2018\right)\)
\(=2018.2019+2018^3.2019+...+2018^{2017}.2019\)
\(=2019\left(2018+2018^3+...+2018^{2017}\right)⋮2019\)
b/ \(M=2018+2018^2+...+2018^{2018}\)
\(2018M=2018^2+2018^3+...+2018^{2018}+2018^{2019}\)
Lấy dưới trừ trên:
\(2018M-M=-2018+2018^{2019}\)
\(\Rightarrow2017M=2018^{2019}-2018\)
\(\Rightarrow M=\frac{2018^{2019}-2018}{2017}=\frac{2018^{2019}}{2017}-\frac{2017+1}{2017}=\frac{2018^{2019}}{2017}-1-\frac{1}{2017}\)
\(\Rightarrow M=N-\frac{1}{2017}\Rightarrow M< N\)
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Rightarrow S=2^{2018}-1\)
Vậy \(S=2^{2018}-1\)
\(S=\frac{1+2+2^2+2^3+...+2^{2017}}{1-2^{2018}}\) (1)
đặt \(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^{2018}\right)-1\)
\(\Rightarrow A=2^{2018}+2-1=2^{2018}+1\) (2)
\(\left(1\right)\left(2\right)\Rightarrow S=\frac{2^{2018}+1}{1-2^{2018}}\)
làm đến đây thì............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................tớ ko bt lm nx