K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

S = 1 + 0,9 + 0,9^2 + ...+ 0,9^n + ...
S là tổng của csn có u1 = 1, q = 0,9 (có |q| < 1)
S = u1 / (1 - q) = 1 / (1 - 0,9) = 10.

NV
23 tháng 2 2020

\(A=lim\frac{\sqrt{n+2}+\sqrt{n+1}}{1}=lim\left[n\left(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}\right)\right]=+\infty.2=+\infty\)

\(B=lim\frac{8^3.64^n-9.27^n}{4^4.64^n+5^3.25^n}=\frac{8^3-9.\left(\frac{27}{64}\right)^n}{4^4+5^3\left(\frac{25}{64}\right)^n}=\frac{8^3}{4^4}=2\)

\(1;-\frac{1}{2};\frac{1}{4}...\) là dãy cấp số nhân lùi vô hạn có \(u_1=1\)\(q=-\frac{1}{2}\)

Do \(\left|q\right|< 1\) nên theo công thức tổng cấp số nhân:

\(S_n=\frac{u_1}{1-q}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

22 tháng 2 2020

câu tính tổng S mk làm đc oy nhé k cần lm câu đó nữa đâu

7 tháng 10 2019

Tính tổng :

a) 12+322+523+....+2n12n12+322+523+....+2n−12n

b) 1222+3242+....+(1)n1.n\(^2\)

Giải

a) HD: Đặt tổng là S\(_n\) và tính 2S\(_n\)

ĐS : S\(_n\)=3−\(\frac{2n+3}{2^n}\)

b) HD: n\(^2\)- (n+1)\(^2\)= -2n-1

Ta có: 1\(^2\)-2\(^2\)= -3; 3\(^2\) - 4\(^2\)= -7;....

Ta có: u\(_1\)= -3, d= -4 và tính S\(_n\) trong từng trường hợp n chẵn, lẻ.


Sn=3−2n+32nb) HD : b) HD : n2−(n+1)2=−2n−1n2−(n+1)2=−2n−1 Ta có 12−22=−3;32−42=−7;...12−22=−3;32−42=−7;... b) HD :

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

22 tháng 1 2020

Bài 1. Ta có:

\(\begin{array}{l} S = \sum\limits_{k = 1}^n {{x^{2k}}} + \sum\limits_{k = 1}^n {\dfrac{1}{{{x^{2k}}}} + 2n} \\ = {x^2}\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}} + \dfrac{1}{{{x^2}}}.\dfrac{{1 - \dfrac{1}{{{x^{2n}}}}}}{{1 - \dfrac{1}{{{x^2}}}}} + 2n\\ = \dfrac{{\left( {1 - {x^{2n}}} \right)\left( {{x^{2n + 2}} - 1} \right)}}{{\left( {1 - {x^2}} \right){x^{2n}}}} + 2n \end{array}\)

Bài 2.

Ta có:

\(\begin{array}{l} T = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + ... + \dfrac{{2n - 1}}{{{2^n}}}\left( 1 \right)\\ \dfrac{1}{2}T = \dfrac{1}{{{2^2}}} + \dfrac{3}{{{2^3}}} + \dfrac{5}{{{2^4}}} + ... + \dfrac{{2n - 3}}{{{2^n}}} + \dfrac{{2n - 1}}{{{2^{n + 1}}}}\left( 2 \right) \end{array}\)

\((1)-(2)\)\(\Rightarrow \dfrac{1}{2}T = \dfrac{1}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + ... + \dfrac{2}{{{2^n}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}\)

\(\begin{array}{l} \Rightarrow T = 2\left[ {\dfrac{1}{2} + \dfrac{1}{2}\dfrac{{1 - {{\left( {\dfrac{1}{2}} \right)}^{n - 1}}}}{{1 - \dfrac{1}{2}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}} \right]\\ = 1 + \dfrac{{{2^{n - 1}} - 1}}{{{2^{n - 2}}}} - \dfrac{{2n - 1}}{{{2^n}}} \end{array}\)

NV
20 tháng 11 2019

\(S=x^2+\frac{1}{x^2}+2+x^4+\frac{1}{x^4}+2+...+x^{2n}+\frac{1}{x^{2n}}+2\)

\(=\left(x^2+x^4+...+x^{2n}\right)+\left(\frac{1}{x^2}+\frac{1}{x^4}+...+\frac{1}{x^{2n}}\right)+2n\)

\(=x^2.\frac{\left(x^2\right)^{n-1}-1}{x^2-1}+\frac{1}{x^2}.\frac{\left(\frac{1}{x^2}\right)^{n-1}-1}{\frac{1}{x^2}-1}+2n\)

\(=\frac{x^{2n}-x^2}{x^2-1}+\frac{x^{2-2n}-1}{1-x^2}+2n\)

\(T=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+...+\frac{2n-3}{2^{n-1}}+\frac{2n-1}{2^n}\)

\(\Rightarrow2T=1+\frac{3}{2}+\frac{5}{2^2}+...+\frac{2n-1}{2^{n-1}}\)

\(\Rightarrow T=1+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{n-1}}-\frac{2n-1}{2^n}\)

\(T=1+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-2}}-\frac{2n-1}{2^n}\)

\(T=1+1.\frac{\left(\frac{1}{2}\right)^{n-2}-1}{\frac{1}{2}-1}-\frac{2n-1}{2^n}=3-\frac{1}{2^{n-1}}-\frac{2n-1}{2^n}=3-\frac{1}{2^n}-\frac{n}{2^{n-1}}\)

21 tháng 1 2020

5,Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

Câu 1:

$S=1+\cos ^2x+\cos ^4x+...+\cos ^{2n}x=1+\cos ^2x+(\cos ^2x)^2+...+(\cos ^2x)^n=\frac{(\cos ^2x-1)(1+\cos ^2x+(\cos ^2x)^2+...+(\cos ^2x)^n}{\cos ^2x-1}$

$=\frac{(\cos ^2x)^{n+1}-1}{\cos ^2x-1}=\frac{\cos ^{2n+2}x-1}{\sin ^2x}$