Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 3; – 6; 12; – 24; ... là cấp số nhân với u1 = 3 và công bội q = – 2.
Khi đó tổng của 12 số hạng đầu của cấp số nhân đã cho là:
\({S_{12}} = \frac{{3\left[ {1 - {{\left( { - 2} \right)}^{12}}} \right]}}{{1 - \left( { - 2} \right)}} = 12\,\,285\).
b) Ta có: \(\frac{1}{{10}},\frac{1}{{100}},\frac{1}{{1\,\,000}},...\) là một cấp số nhân với u1 = \(\frac{1}{{10}}\) và công bội \(q = \frac{1}{{10}}\)
Khi đó tổng của 5 số hạng đầu của cấp số nhân đã cho là:
\({S_5} = \frac{{\frac{1}{{10}}\left[ {1 - {{\left( {\frac{1}{{10}}} \right)}^5}} \right]}}{{1 - \frac{1}{{10}}}} = 0,1111\).
\(S_n=nu_1+\dfrac{n\left(n-1\right)}{2}d=n\left(n.\dfrac{d}{2}+u_1-\dfrac{d}{2}\right)=n\left(n+4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{d}{2}=1\\u_1-\dfrac{d}{2}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=5\\d=1\end{matrix}\right.\)
\(u_n=5+1.\left(n-1\right)=n+4\)
Câu 2:
\(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2u_1+4d=20\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u_1+4d-2u_1-5d=20-17\\2u_1+5d=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-d=3\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=-3\\2u_1=17-5d=17+5\cdot3=32\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1=16\\d=-3\end{matrix}\right.\)
Câu 1:
Để a,b,c lập thành cấp số cộng thì
\(\left[{}\begin{matrix}a+c=2b\\a+b=2c\\b+c=2a\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x+1+x^2-1=2\cdot\left(3x-2\right)\\x+1+3x-2=2\left(x^2-1\right)\\x^2-1+3x-2=2\left(x+1\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x^2+x-6x+4=0\\2x^2-2=4x-1\\x^2+3x-3-2x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x^2-5x+4=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left(x-1\right)\left(x-4\right)=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left\{1;4\right\}\\x\in\left\{\dfrac{2+\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right\}\\x\in\left\{\dfrac{-1+\sqrt{21}}{2};\dfrac{-1-\sqrt{21}}{2}\right\}\end{matrix}\right.\)
a) \({u_2} = {u_1} + d\)
\({u_3} = {u_1} + 2d\)
…
\({u_{n - 1}} = {u_1} + \left( {n - 2} \right)d\)
\({u_n} = {u_1} + \left( {n - 1} \right)d\)
\({S_n} = {u_1} + {u_1} + 2d + \ldots + {u_1} + \left( {n - 2} \right)d + {u_1} + \left( {n - 1} \right)d\)
b) \({S_n} = {u_n} + {u_{n - 1}} + \ldots + {u_2} + {u_1} = {u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1} + d + {u_1}\)
c) \(2{S_n} = \left( {{u_1} + {u_1} + d + \ldots + {u_1} + \left( {n - 1} \right)d} \right) + \left( {{u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1}} \right)\).
\( \Rightarrow 2{S_n} = n.\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
\( \Rightarrow {S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
a)
-1 | 3 | 7 | 11 | 15 | 19 | 23 | 27 |
27 | 23 | 19 | 15 | 11 | 7 | 3 | - 1 |
Nhận xét: Tổng của các số hạng ở mỗi cột bằng nhau và bằng 26
b) Tổng các số hạng của cấp số cộng là: 26.8/2 = 104
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_1}.{q^2}\)
…
\({u_{n - 1}} = {u_1}.{q^{n - 2}}\)
\({u_n} = {u_1}.{q^{n - 1}}\)
\({S_n} = {u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}\)
b) \(q{S_n} = q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n}\)
c) \({S_n} - q{S_n} = \left( {{u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}} \right) - (q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n})\).
\(\begin{array}{l} \Leftrightarrow \left( {1 - q} \right){S_n} = {u_1} - {u_1}{q^n} = {u_1}\left( {1 - {q^n}} \right)\\ \Rightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\end{array}\)
a) Ta có: 3; 1; – 1; ... là cấp số cộng với số hạng đầu u1 = 3 và công sai d = 1 – 3 = – 2.
Khi đó u10 = 3 + (10 – 1).(– 2) = 3 + (– 18) = – 15.
Tổng của 10 số hạng đầu của cấp số cộng là:
S15 = \(\frac{{10\left[ {3 + \left( { - 15} \right)} \right]}}{2} = - 60\).
b) 1,2; 1,7; 2,2; ... với n = 15.
Ta có: 1,2; 1,7; 2,2; ... là cấp số cộng với số hạng ban đầu u1 = 1,2 và công sai d = 1,7 – 1,2 = 0,5.
Khi đó u15 = 1,2 + (15 – 1).0,5 = 8,2.
Tổng của 15 số hạng đầu của cấp số cộng là:
S15 = \(\frac{{15\left[ {1,2 + 8,2} \right]}}{2} = 70,5\).