\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

\(S=7(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{63}) \)

\(S=7(\frac{1}{3}-\frac{1}{63})\)

\(S=7(\frac{21}{63}-\frac{1}{63}) \)

\(S=7.\frac{20}{63}\)

\(S=\frac{20}{9}\)

Do đó:\(S<\frac{5}{2}\)

6 tháng 4 2016

S=\(\frac{2.7}{3.5}+\frac{2.7}{5.7}+\frac{2.7}{7.9}+....+\frac{2.7}{61.63}\)\(\frac{5}{2}\)

S=7.(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....-\frac{1}{63}\)) và\(\frac{5}{2}\)

S=7.(\(\frac{1}{3}-\frac{1}{63}\)) và\(\frac{5}{2}\)

S=7.\(\frac{20}{63}\)\(\frac{5}{2}\)

=>S=\(\frac{20}{9}\)so với \(\frac{5}{2}\)

=>S=\(\frac{40}{18}\)\(\frac{45}{18}\)

=>S<\(\frac{5}{2}\)

3 tháng 4 2016

S=2(1-1/3+1/3-1/5+...+1/97-1/99)
  =2(1-1/99)
  =2(98/99)
  =196/99
 

 

2S=2/1*3+2/3*5+...+2/97*99

2S=1/1-1/3+1/3-1/5+...+1/97-1/99

2S=1-1/99

2S=98/99

S=49/99

14 tháng 4 2016

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{101.103}\)

\(=>A=\frac{3}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\right)\)

\(=>A=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{101}-\frac{1}{103}\right)\)

\(=>A=\frac{3}{2}.\left(1-\frac{1}{103}\right)=\frac{3}{2}.\frac{102}{103}=\frac{153}{103}>1\) (vì 153>103)

Vậy A>1

14 tháng 4 2016

sorry,dòng thứ 2 sửa lại:\(A=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{3}{101.103}\right)\) nhé!

23 tháng 3 2016

mn giúp

14 tháng 4 2017

Này bạn làm sao để ra dấu phân số vậy

13 tháng 4 2016

S=10/2.12+10/12.22+10/22.32+10/32.42+.......+10/2002.2012

S=1/2-1/12+1/12-1/22+1/22-1/32+1/32-1/42+.....+1/2002-1/2012

S=1/2-1/2012

S=????

bạn tự tính nhé

13 tháng 4 2016

S=10.1/10{1/2-1/12+1/12-1/22+1/22-1/32+...+1/2002-1/2012}
  =1/2-1/2012
  =1005/2012

13 tháng 4 2016

Không chép lại đề nhé

Ta có:

P=\(\frac{50-49}{49}+\frac{50-48}{48}+...+\frac{50-2}{2}+\frac{50-1}{1}\)

P=\(\frac{50}{49}-\frac{49}{49}+\frac{50}{48}-\frac{48}{48}+...+\frac{50}{2}-\frac{2}{2}+\frac{50}{1}-\frac{1}{1}\)

P=\(\left(\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\right)+\frac{50}{1}-\left(\frac{49}{49}+\frac{48}{48}+...+\frac{2}{2}+\frac{1}{1}\right)\)

P=\(50\cdot\left(\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)+50-49\)                 (chỗ này gộp nha)

P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}\right)+1\)

P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)+\frac{50}{50}\)

P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)\)

=>P=50S

=>\(\frac{S}{P}=\frac{S}{50S}=\frac{1}{50}\)

Vừa nãy mình nói nhầm, Sorry.

13 tháng 4 2016

Tích nha

 

24 tháng 3 2016

Câu 1 :\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{100}=\frac{1}{100}\)

24 tháng 3 2016

like mình làm hết

31 tháng 3 2016

M=1+1/2^2+1/3^2+1/4^2+...+1/10^2>1+1/2*3+1/3*4+1/4^5+...+1/10*11

                             M>1+1/2-1/3+1/4-1/4+1/5-...-1/11

                            M>1+1/2-1/11

                              M>1+9/22

                               M>31/22

                                vì 31/22>4/3 nên M>4/3

31 tháng 3 2016

khúc đằng trước hỉu j chết liền

lên olm đăg thử đi hihi

17 tháng 3 2016

a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm

 

17 tháng 3 2016

b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)

\(\frac{1}{2}\) + \(\frac{1}{9}\)\(\frac{11}{18}\)