K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Đáp án C

Phương pháp :

+)  Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2

y = f’(m – 2)(x – m +2)+y(m – 2) (d)

+) Xác định các giao điểm của d và các đường tiệm cận => x2;y1

+) Thay vào phương trình x2 + y1 = –5 giải tìm các giá trị của m.

Cách giải: TXĐ: D = R\ {–2}

Ta có 

=>Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2 là: 

Đồ thị hàm số  y = x - 1 x + 2  có đường TCN y = 1và tiệm cậm đứng x = –2

4 tháng 11 2018

Chọn D

8 tháng 3 2019

Đáp án D

Dựa vào đồ thị hàm số y = f ' ( x ) ⇒ f ' x = 3 x 2 - 1  

Khi đó f x = ∫ f ' x d x = x 3 - 3 x + C . 

Điều kiện đồ thị hàm số f(x) tiếp xúc với đường thẳng y = 4 là:

f x = 4 f x = 0 ⇒ x 3 - 3 x + C = 4 3 x 2 - 1 = 0 ⇔ x = - 1 C = 2  (Do x < 0 suy ra  f x = x 3 - 3 x + 2 C

Cho C ∩ O x ⇒  hoành độ các giao điểm là x = -2,x = 1 

Khi đó  S = ∫ - 2 1 x 3 - 3 x + 2 d x = 27 4 .

26 tháng 8 2017

Đáp án A

Phương trình hoành độ giao điểm:

x 2 + x + 3 x − 2 = x x ≠ 2 ⇒ x 2 + x + 3 = x 2 − 2 x ⇔ x = − 1 t / m .

10 tháng 3 2018

Chọn C

11 tháng 4 2018

Đáp án C

Giả sử 

Hoành độ điểm D là nghiệm phương trình: 

 

Hoành độ điểm E là nghiệm của phương trình: 

 

Hoành độ điểm F là nghiệm của phương trình: 

 

Khi đó 

11 tháng 6 2019

Chọn đáp án D

Phương trình hoành độ giao điểm hai đồ thị là

20 tháng 5 2017

18 tháng 8 2019

Chọn đáp án C.