Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tử số:
$X=1+2+2^2+2^3+...+2^{2008}$
$2X=2+2^2+2^3+2^4+....+2^{2009}$
$\Rightarrow 2X-X=(2+2^2+2^3+2^4+....+2^{2009})-(1+2+2^2+...+2^{2008})$
$\Rightarrow X=2^{2009}-1$
$\Rightarrow S=\frac{X}{1-2^{2009}}=\frac{2^{2009}-1}{-(2^{2009}-1)}=-1$
-1
mình ko chắc đâu đó nha,bài này mình chỉ làm có mấy lần à,sai thì cho mình xin lỗi nhé T_T
Tử = 1+2+2^2+2^3+...+2^2008
2Tử = 2+2^2+2^3+...+2^2009
=> 2Tử-Tử=2^2009-1
S= (2^2009-1)/(1-2^2009)=-1
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
Bài làm:
\(A=1-2+3-4+5-...-2008+2009\)
\(A=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(2007-2008\right)+2009\)
\(A=-1-1-1-...-1+2009\)(1004 số -1)
\(A=-1004+2009=1005\)
\(B=1+2-3-4+5+6-7-...-2007-2008+2009+2010\)
\(B=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(2006-2007-2008+2009\right)+2010\)
\(B=1+0+0+...+0+2010\)
\(B=2011\)
Học tốt!!!!
ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)
B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)
ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)
vậy A<B
\(B=\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)
\(2B=\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)
\(B-2B=\)\(\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)\(-\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)
\(-B=\dfrac{1-2^{2009}}{1-2^{2009}}\)
B=-1
ta có:
2B = 2 + 2^2 +...+ 2^2009 / 1 - 2^2009
2B - B = (2 + 2^2 +...+ 2^2009)-(1 + 2 +...+ 2^2008) / 1 - 2^2009
B = 2^2009 - 1 / 1 - 2^2009
B = -(2^2009 - 1) / 1 - 2^2009 * (-1)
B = 1 * (-1)
B = -1
Đặt \(C=1+2+2^2+...+2^{2007}+2^{2008}\)
\(\Rightarrow2C=2+2^2+2^3+...+2^{2008}+2^{2009}\)
\(\Rightarrow2C-C=2^{2009}-1\)
\(\Rightarrow C=2^{2009}-1\)
\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-1\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)
Giải:
B=1+2+22+23+...+22008/1-22009
Ta gọi phần tử là A, ta có:
A=1+2+22+23+...+22008
2A=2+22+23+24+...+22009
2A-A=(2+22+23+24+...+22009)-(1+2+22+23+...+22008)
A=22009-1
Vậy B=22009-1/1-22009
Chúc bạn học tốt!
\(=\dfrac{2\left(1+2+2^2+...+2^{2008}\right)-\left(1+2+2^2+...+2^{2008}\right)}{1-2^{2009}}\)
\(=\dfrac{\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)}{1-2^{2009}}\)
\(=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)
cảm ơn bạn nha