Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức là A
\(4xA=\frac{4}{2x4x6}+\frac{4}{4x6x8}+\frac{4}{6x8x10}+\frac{4}{8x10x12}+...+\frac{4}{94x96x98}+\frac{4}{96x98x100}\)
\(4xA=\frac{6-2}{2x4x6}+\frac{8-4}{4x6x8}+\frac{10-6}{6x8x10}+\frac{12-8}{8x10x12}+...+\frac{98-94}{94x96x98}+\frac{100-96}{96x98x100}\)
\(4xA=\frac{1}{2x4}-\frac{1}{4x6}+\frac{1}{4x6}-\frac{1}{6x8}+\frac{1}{6x8}-\frac{1}{8x10}+...+\frac{1}{94x96}-\frac{1}{96x98}+\frac{1}{96x98}-\frac{1}{98x100}\)
\(4xA=\frac{1}{2x4}-\frac{1}{98x100}=\frac{49x50-1}{98x100}\Rightarrow A=\frac{49x50-1}{4x98x100}\)
\(\frac{1}{2.4.6}+\frac{1}{4.6.8}+\frac{1}{6.8.10}+..+\frac{1}{50.52.54}\)
\(=\frac{1}{4}.\left(\frac{1}{2.4}-\frac{1}{4.6}+\frac{1}{4.6}-\frac{1}{6.8}+....+\frac{1}{50.52}-\frac{1}{52.54}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{2.4}-\frac{1}{52.54}\right)\)
\(=\frac{1}{4}.\frac{175}{1404}=\frac{175}{5616}\)
\(A=\frac{5}{4}.\left(\frac{4}{2.4.6}+\frac{4}{4.6.8}+\frac{4}{6.8.10}+....+\frac{4}{16.18.20}\right)\)
\(=\frac{5}{4}.\left(\frac{1}{2.4}-\frac{1}{4.6}+\frac{1}{4.6}-\frac{1}{6.8}+\frac{1}{6.8}-\frac{1}{8.10}+....+\frac{1}{16.18}-\frac{1}{18.20}\right)\)
\(=\frac{5}{4}.\left(\frac{1}{2.4}-\frac{1}{18.20}\right)=\frac{5}{4}.\frac{11}{90}=\frac{11}{72}\)
\(\dfrac{1}{2\times4\times6}+\dfrac{1}{4\times6\times8}+...+\dfrac{1}{96\times98\times100}\\ =\dfrac{1}{8}\times\dfrac{1}{1\times2\times3}+\dfrac{1}{8}\times\dfrac{1}{2\times3\times4}+...+\dfrac{1}{8}\times\dfrac{1}{48\times49\times50}\\ =\dfrac{1}{8}\times\left(\dfrac{1}{1\times2\times3}+\dfrac{1}{2\times3\times4}+...+\dfrac{1}{48\times49\times50}\right)\)
Đặt \(A=\dfrac{1}{1\times2\times3}+\dfrac{1}{2\times3\times4}+...+\dfrac{1}{48\times49\times50}\)
\(2A=\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+...+\dfrac{2}{48\times49\times50}\\ 2A=\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+...+\dfrac{1}{48\times49}-\dfrac{1}{49\times50}\\ 2A=\dfrac{1}{1\times2}-\dfrac{1}{49\times50}\\ 2A=\dfrac{1}{2}-\dfrac{1}{2450}\\ 2A=\dfrac{612}{1225}\\ A=\dfrac{306}{1225}\)
Thay vào biểu thức ban đầu được:
\(\dfrac{1}{2\times4\times6}+\dfrac{1}{4\times6\times8}+...+\dfrac{1}{96\times98\times100}\\ =\dfrac{1}{8}\times\dfrac{306}{1225}\\ =\dfrac{153}{4900}\)