Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... +2 mũ 10
Gọi biểu thức trên là A , ta có :
A = 2^1+2^2 9+2^3+ 2^4 +...+2^10
2A= 2^2 +2^3+2^4+...+2^10+2^11
2A-A=2^11-2^1
A=2^10
b) Làm tương tự như tớ từ dòng thứ 3 mà tớ viết
5A = 5^2+5^3+...+5^25 5^26
5A-A=5^26 - 5^1
A=5^25
xin lỗi vì lúc đó mình cũng đang học bài nên hơi mất tập trung và quên chia 4 đến lúc đọc lại câu trả lời mới thấy sót
`A = 2 + 2^2+ ... + 2^2017`
`=> 2A = 2^2 + 2^3 + ... + 2^2018`
`=> 2A - A = (2^2 + 2^3 + ... + 2^2018) - (2 + 2^2 + ... +2^2017)`
`=> A = 2^2018 - 2`
`B = 1 + 3^2 + ... + 3^2018`
`=> 3^2B = 3^2 + 3^4 + ... + 3^2020`
`=> 9B-B =(3^2 + 3^4 + ... + 3^2020) - (1 + 3^2 + ... + 3^2018`
`=> 8B = 3^2020 - 1`
`=> B = (3^2020 - 1)/8`
`C = 5 + 5^2 - 5^3 + ... + 5^2018`
`=> 5C = 5^2 + 5^3 - 5^4 + ... +5^2019`
`=> 5C + C = ( 5^2 + 5^3 - 5^4 + ... 5^2019) + (5 + 5^2 - 5^3 + ... + 5^2018)`
`=> 6C = 55 + 5^2019`
`=> C = (5^2019 + 55)/6`
a) \(100-\left(3.5^2-2.3^3\right)\)
\(100-\left(75-52\right)=100-23=77\)
b)\(4.5^2-3.2^3+3^9:3^7\)
\(100-24+9=85\)
c) \(\left(392:7\right).2^3-2^3+2020^0\)
\(8\left(56-1\right)+1=441\)
d) \(\left(6^2+7^2+8^2+9^2+10^2\right)-\left(1^2+2^2+3^2+4^2+5^2\right)=275\)
(lười - thông cảm :(
Đây bạn ơi a,\(100-\left(3.5^2-2.3^3\right)=100-\left(75-54\right)\))=100-19=81
b,\(4.5^2-3.2^3+\frac{3^9}{3^7}=100-24+9=85\)
c,\(\left(392:7\right).2^3-2^3+2020^0=56.2^3-2^3+1=441\)
d,\(=\left(6^2-1^2\right)+\left(7^2-2^2\right)+\left(8^2-3^3\right)+\left(9^2-4^2\right)+\left(10^2-5^2\right)\)
=\(5.7+5.9+5.11+5.13+5.15=5\left(7+9+11+13+15\right)\)
=\(5.55=275\)
\(2+2^2+2^3+...+2^{11}+2^{12}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+\left(2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+2^{10}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+2^7+2^{10}\right)\)chia hết cho \(7\).
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
ta nhận thấy 2^1+2^2+2^3+2^4 chia hết cho 7.Vậy cứ 4 số liên tiếp cũng chia hết cho 7.
=>Số số hạng của mũ là:
100-1:1=100
mà 100 chia hết cho 4
=>[2^1+2^2+...2^98+2^99+2^100]:7 có số dư là 0