Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 2² + 2³ + ... + 2²⁰¹⁷
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹⁸
S = 2S - S
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹⁸) - (1 + 2 + 2² + 2³ + ... + 2²⁰¹⁷)
= 2²⁰¹⁸ - 1
`S=1+2+2^2+2^3+...+2^2017`
`2S=2+2^2+2^3+2^4+...+2^2018`
`2S-S=(2+2^2+2^3+2^4+...+2^2018)-(1+2+2^2+2^3+...+2^2017)`
`S=2^2018 -1`
S = 1 + 2 + 3 + 4 +.....+ 298 + 299
Dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là:
( 299 - 1): 1 + 1 = 299
Áp dụng công thức tính tổng của dãy số cách đều ta có tổng S:
S = ( 299 + 1) \(\times\) 299 : 2
S = 44850
\(S=1-2+2^2-2^3+.....+2^{100}\)
\(\Rightarrow2S=2-2^2+2^3-......-2^{101}\)
\(\Rightarrow3S=2S+S=\left(2-2^2+2^3-....-2^{101}\right)+1-2+2^2-2^3+....+2^{100}\)
\(\Rightarrow3S=-2^{101}+1\)
\(\Rightarrow S=\frac{1-2^{101}}{3}\)
Đặt \(A=1+2+2^2+2^3+...+2^{2008}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(2A=2+2^2+2^3+...+2^{2009}\)\(2A-A=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)\)
\(A=2^{2009}-1\)
\(\Rightarrow S=\frac{2^{2009}-1}{1-2^{2009}}\)
\(S=\frac{2^{2009}-1}{-\left(-1+2^{2009}\right)}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)