K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2024

\(A=1+2+2^2+2^3+...+2^{33}\\ \Rightarrow2A=2+2^2+2^3+2^4+...+2^{34}\\ \Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{34}\right)-\left(1+2+2^2+2^3+...+2^{33}\right)\\ \Rightarrow A=2^{34}-1\)
Ta có: \(2^{34}=2^{17.2}=\left(2^{17}\right)^2\) là số chính phương
Do đó: \(A=2^{34}-1\) không phải là số chính phương
Vậy...

9 tháng 11 2015

Không vì S = \(\frac{3^{30}-1}{2}\) không phải bình phương của 1 số

2 tháng 5 2016

Ta thấy từng số hạng của A chia cho 3 dư 1 (cái này cũng là định lý fecmat nhưng làm dài dòng lắm)

Nên A chia cho 3 có số dư là 60 mà 60 chia hết cho 3 Nên A chia hết cho 3

b, Thì lấy 2A-A sẽ ra

c, Mình ko bt làm

30 tháng 3 2018

giả sử A là số chính phương

Ta có: \(A=3+3^2+3^3+...+3^{2004}\)

               \(=3.\left(1+3+3^2+....+3^{2003}\right)\)

=> A chia hết cho 3

=> A chia hết cho 32 (vì A là số chính phương)

=> 1 + 3 + 32 + ... + 32003 chia hết cho 3 (Vô lí)

=> A không phải là số chính phương

P/s: Không biết đúng không, làm đại

30 tháng 3 2018

Ta có : \(3⋮3,3^2⋮3,3^3⋮3,.....,3^{2004}⋮3\)

         => A\(⋮\)3 (1)

ta lại có : \(3^2⋮3^2,3^3⋮3^2,....,3^{2004}⋮3^2\) mà 3 không chia hết cho \(3^2\)

        => A không chia hết cho 3^2 (2)

từ (1) , (2) => A không là số chính phương

5 tháng 2 2016

Giả sử A là số chính phương

A = 3 + 32 + 33 +...+ 32004

A = 3(1 + 3 + 32 +...+ 32004)

=> A chia hết cho 3

=> A chia hết cho 32 (Vì A là số chính phương)

=> 1 + 3 + 32 +...+ 32004 chia hết cho 3 (Điều này rõ ràng vô lí)

Vậy A không là số chính phương

5 tháng 2 2016

ko 

ủng hộ mk nha các bạn

2 tháng 10 2019

Vì \(A=3+2^2+2^3+...+2^{2018}\)chia 4 dư 3 nên không là số chính phương

Xét biểu thức \(2B=2^{101}-2^{100}+2^{99}-...-2^4+2^3-2^2\)

Ta có \(2B+B=2^{101}-2\Rightarrow B=\frac{2^{101}-2}{3}\)

2 tháng 10 2019

nhân vào 2 A rồi trừ A là ra mà

A = 22019-1 , A ko phải số cp

T
Tai
VIP
27 tháng 7 2023

 

 Ta có: A = 5 + 52 + 5+....+ 5100

      ⇒�=(5+52)+(53+54)+...+(599+5100)A=(5+52)+(53+54)+...+(599+5100)

       ⇒�=5(1+5)+53.(1+5)+...+599.(1+5)A=5(1+5)+53.(1+5)+...+599.(1+5)

       ⇒�=5.6+53.6+...+599.6A=5.6+53.6+...+599.6

              �=6.(5+53+...+599)A=6.(5+53+...+599) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

23 tháng 10 2024

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.