K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=1+2+2^2+...+2^{62}+2^{63}\)

=>\(2A=2+2^2+...+2^{63}+2^{64}\)

=>\(2A-A=2+2^2+...+2^{63}+2^{64}-1-2-...-2^{62}-2^{63}\)

=>\(A=2^{64}-1\)

3 tháng 12 2015

A=(2 + 22+ 23) + (24 + 25 +26) +......+(261+262+263)

A = 14 + 23(2 + 22 + 23) + .............+ 260(2 + 22 + 23)

A=14+23.14 + ..................+ 260 . 14

A= 14(23+..... +260) chia hết cho 14 ( vì 14 chia hết cho 14)

Vậy A chia hết cho 14

 

16 tháng 12 2019

\(S=1+2+2^2+2^3+...+2^{62}+2^{63}\)

\(2S=2\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)

\(2S=2+2^2+2^3+2^4+...+2^{63}+2^{64}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{63}+2^{64}\right)-\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)

\(S=2^{64}-1\)

16 tháng 12 2019

Bài toán làm theo kiểu 2.S là được nếu là 3x thì sử dụng 3.S. Tương tự như vậy

Ta có: 1 + 2 + 22 + 23 +...+ 262 + 263

\(\Rightarrow\) 2.(1 + 2 + 22 + 23 +...+ 262 + 263) trừ (1 + 2 + 22 + 23 +...+ 262 + 263) = 1 + 2 + 22 + 23 +...+ 262 + 263

= (2 + 22 + 23 + 24 +...+ 263 + 264) trừ (1 + 2 + 22 + 23 +...+ 262 + 263)

(Sử dụng phương pháp chịt tiêu: (là thế này nè)

 (2 + 22 + 23 + 24 +...+ 263 + 264) trừ (1 + 2 + 22 + 23 +...+ 262 + 263)

Còn lại 264 trừ 1)

= 264 trừ 1

Vậy S = 264 trừ 1

12 tháng 11 2017

a) S=1+2+22+...+263

2S=2+22+23+...+264

2S-S=S=264-1

các câu khác tương tự

22 tháng 4 2018

Con chó như mày làm đc chắc óc lợn mày bảo tao như z bây h tao cũng phải dả lại mày nhá 

28 tháng 8 2019

Ko ghi đề

\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)

Mấy cái khác cg lm như v (b thì 3b)

Nhớ đúng mk nhá

30 tháng 12 2017

a = 2 + 22 +23+........................+ 2100 chia hết cho 62

  a =  [ 2 + 22 +23+.24+25  ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ] 

 a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ] 

a=  62 . [ 210 +  215 +  220 +......................+  2100 ] 

 Mà 62 chia hết cho 62 =>    62 . [ 210 +  215 +  220 +......................+  2100 ]   hay a chia hết cho 62

30 tháng 12 2017

a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)

   = 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)

   = 62+2^5.62+....+2^95.62

   = 62.(1+2^5+....+2^95) chia hết cho 62

=> ĐPCM

k mk nha

7 tháng 11 2021

Đặt \(A=2^2+2^3+...+2^{63}\)

\(\Rightarrow2A=2^3+2^4+...+2^{64}\\ \Rightarrow2A-A=2^3+2^4+...+2^{64}-2^2-2^3-...-2^{63}\\ \Rightarrow A=2^{64}-2^2\)