Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+3x-7y=21
<=> x(y+3) -7y = 21
<=> x(y+3) = 21+7y
<=> x(y+3) = 7(y+3)
<=> (x-7)(y+3)=0
Suy ra nghiệm của ptr là
x=7, y tùy ý thuộc Z
x tùy ý thuộc Z, y=-3.
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
1.Tính góc A=180-75=105 độ
suy ra góc C=180- góc A-góc B=180-50-105=....
câu 1 góc A=180-75=105 độ
lại có tổng 3 góc trong 1 tam giác =180 độ nên goc C=180-50-105=25 do
câu 2 có ý=x-3 rồi thế vào phương trình x2 -x*(x-3)+5=-13 nen suy ra x=6
Ta có
xoy + yoz =180o (kề bù)
<=> 5yoz+ yoz=1800
6yoz=180o
=> yoz=30o
=> xoy=5x30=150o
hình bạn tự vẽ nhé
b) Vì ot nằm giữ góc xoy(xoy>xot, 150o>100o) nên:
xot+toy=xoy
100o+yot=150o
yot=50o
Vì ot nằm giữa zox ( zox>tox, 180o>100o) nên
zot+tox=zox
zot+100o=180o
zot=80o
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
|x| \(\le\) 3 \(\Leftrightarrow-3\le x\le3\)