K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

\(\left(x^2-5x+5\right)^{2306}\)

Tổng các hệ số của đa thức thu được sau khi khai triển chính là giá trị của đa thức đó tại \(x=1.\)

+ Thay \(x=1\) vào đa thức \(\left(x^2-5x+5\right)^{2306}\) ta được:

\(\left(1^2-5.1+5\right)^{2306}\)

\(=\left(1-5+5\right)^{2306}\)

\(=\left[\left(-4\right)+5\right]^{2306}\)

\(=1^{2306}\)

\(=1.\)

Vậy tổng các hệ số của đa thức \(\left(x^2-5x+5\right)^{2306}\) thu được sau khi khai triển là: \(1.\)

Chúc bạn học tốt!

26 tháng 4 2016

tổng các hệ số là giá trị của f(x) khi x=1. VD: f(x)=2x^2+3x-1 suy ra tổng các hệ số là f(1)=2.1^2+3*1-1=4

tương tự bài kia ta có tổng các hệ số là 1

4 tháng 4 2017

Giả sử ta có : A(x) = 3x + 67 ;  B(y) = y2 - 11 + 2y3

Thì : A(1) = 3.1 + 67 = 70

B(1) = 1- 11 + 2.13 = - 8

   Vậy thì tổng các hệ số của hạng tử trong đa thức chính là tổng các hạng tử của đa thức có biến là 1 .

Sau đó thì bạn thay 1 vào P(x) rồi tìm được kết quả là 1

Cái chính là hiểu bạn chất vấn đề , còn chỗ giả sử kia không phải ghi vào vở đâu nhé !

Chúc bạn học chăm !!!

9 tháng 2 2019

Cảm ơn Chi Thảo

Cảm ơn Chi Thảo

Cảm ơn Chi Thảo

19 tháng 2 2018

Đặt \(A\left(x\right)=\left(x^4+4x^2-5x+1\right)^{2017}.\left(2x^4-4x^2+4x-1\right)^{2018}\)

Gọi đa thức A(x) sau khi bỏ dấu ngoặc là : 

\(A\left(x\right)=a_{32280}x^{32280}+a_{32279}x^{32279}+....+a_1x+a_0\)

Ta thấy tổng giá trị các hệ số của đa thức \(a_{32280}+a_{32279}+...+a_1+a_0\)chính là giá trị của đa thức tại \(x=1\)

Ta có \(A\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2017}.\left(2.1^4-4.1^2+4.1-1\right)^{2018}=0\)

Vì \(A\left(1\right)=0\)nên \(a_{32280}+a_{32279}+...+a_1+a_0=0\)

Vậy tổng các hệ số của đa thức sau khi bỏ dấu ngoặc bằng  0

Tổng các hệ số của các hạng tử của đa thức là:

f(x)= 11994.(-1)1995=-1