Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://baigiang.violet.vn/present/show/entry_id/6146495
Tham khảo đi. cho cj nhé
A) 150-[102-(14-11)2 .20210
=150-[102-32.20210 ]
=150-[100-9.1]
=150-91
= 59
a) 3A = 3. ( 30 + 31 + 32 +...+ 311)
3A = 31 + 32 +33 +....+ 312
3A - A = 31 +32+33 +...+312 - 30 - 31-32- ...- 311
2A = 312 -1
A = (312 -1) : 2
b) A = ( 30 + 31 + 32 33) + .... + ( 38 + 39 + 310 + 311)
A = 40 + ... + 38 . ( 30 + 31 +32 +33)
A = 40 + ... + 38 .40
A = 40 . ( 1 + ...+ 38)
Vì 40 chia hết cho 40
=> 40. ( 1 + ...+38) chia hết cho 40
Vậy A chia hết cho 40
a: \(=\dfrac{1}{3}-\dfrac{17}{6}+\dfrac{4}{3}=\dfrac{5}{3}-\dfrac{17}{6}=\dfrac{10-17}{6}=\dfrac{-7}{7}\)
b: \(=\dfrac{5+6}{12}=\dfrac{11}{12}\)
c: \(=\dfrac{-12+7}{28}\cdot\dfrac{28}{15}=\dfrac{-5}{15}=\dfrac{-1}{3}\)
d: \(=\dfrac{2}{3}+\dfrac{1}{5}-\dfrac{4}{15}=\dfrac{10+3-4}{15}=\dfrac{9}{15}=\dfrac{3}{5}\)
e: \(=\dfrac{-3}{16}\left(\dfrac{8}{15}+\dfrac{7}{15}\right)-\dfrac{5}{16}=\dfrac{-3-5}{16}=\dfrac{-1}{2}\)
f: \(=\dfrac{-20}{23}-\dfrac{2}{23}+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-1+\dfrac{10+6+7}{15}=\dfrac{-15+23}{15}=\dfrac{8}{15}\)
g: =5/7(5/11+2/11-14/11)
=-7/11*5/7=-5/11
h: =-5/7(10/13+3/13)+1+5/7
=-5/7+1+5/7
=1
i: \(=\dfrac{7}{4}\left(\dfrac{29}{5}-\dfrac{9}{5}\right)+3+\dfrac{2}{13}=7+3+\dfrac{2}{13}=10+\dfrac{2}{13}=\dfrac{132}{13}\)
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
\(C=2\cdot7+3\cdot8+...+41\cdot46+42\cdot47\)
\(=2\left(2+5\right)+3\left(3+5\right)+...+41\left(41+5\right)+42\left(42+5\right)\)
\(=5\left(2+3+...+41+42\right)+\left(2^2+3^2+...+42^2\right)\)
\(=5\left[\left(42-2+1\right)\cdot\dfrac{\left(42+2\right)}{2}\right]+\left(1^2+2^2+...+42^2-1\right)\)
\(=5\cdot41\cdot\dfrac{44}{2}+\left[\dfrac{42\left(42+1\right)\left(2\cdot42+1\right)}{6}-1\right]\)
\(=5\cdot41\cdot22+7\cdot43\cdot85-1=30094\)