\(\frac{1}{2}\))x(1-\(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

\(L=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)

\(=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}.\frac{5-1}{5}...\frac{2003-1}{2003}.\frac{2004-1}{2004}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{2002}{2003}.\frac{2003}{2004}=\frac{1}{2004}\)

15 tháng 8 2016

cậu học trường nào?

27 tháng 6 2019

\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)

=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)

Vậy \(x\in\left\{\frac{9}{20}\right\}\)

\(b,x+\frac{1}{4}=\frac{4}{3}\)

=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)

Vậy \(x\in\left\{\frac{13}{12}\right\}\)

\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)

=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)

Vậy \(x\in\left\{\frac{25}{42}\right\}\)

\(d,\left|x+5\right|-6=9\)

=> \(\left|x+5\right|=9+6=15\)

=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)

Vậy \(x\in\left\{10;-20\right\}\)

\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)

=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)

\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{6}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)

\(g,x^2=16\)

=> \(\left|x\right|=\sqrt{16}=4\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

vậy \(x\in\left\{4;-4\right\}\)

\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)

=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)

Vậy \(x\in\left\{\frac{5}{6}\right\}\)

\(i,3^3.x=3^6\)

\(x=3^6:3^3=3^3=27\)

Vậy \(x\in\left\{27\right\}\)

\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)

=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)

Vậy \(x\in\left\{\frac{5}{27}\right\}\)

\(k,1\frac{2}{3}:x=6:0,3\)

=> \(\frac{5}{3}:x=20\)

=> \(x=\frac{5}{3}:20=\frac{1}{12}\)

Vậy \(x\in\left\{\frac{1}{12}\right\}\)

25 tháng 4 2018

a) = 3/3 x ( -24/54 +45/54 ) : 7/12

   = 1 x 21/54 x 12/7

   = 18/27 

( hiện tại mik chỉ lm đc thế này thui. thông cảm nk )

11 tháng 7 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\)\(\left(1-\frac{1}{5}\right)\)

=\(\frac{1}{2}.\)\(\frac{2}{3}\cdot\frac{3}{4}\)\(\cdot\frac{4}{5}\)

=\(\frac{1}{5}\)

11 tháng 7 2016

( 1 - 12 ) x ( 1 - 13 ) x ( 1 - 14 ) x ( 1 - 15 )

\(\left(\frac{2}{2}-\frac{1}{2}\right)\times\left(\frac{3}{3}-\frac{1}{3}\right)\times\left(\frac{4}{4}-\frac{1}{4}\right)\times\left(\frac{5}{5}-\frac{1}{5}\right)\)

\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)

\(\frac{1\times2\times3\times4}{2\times3\times4\times5}\)

\(\frac{1}{5}\)

<br class="Apple-interchange-newline"><div id="inner-editor"></div>14 18 +116 +  132 164  + \(\frac{1}{128}\) MC : 128

\(\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)

\(\frac{32+16+8+4=2+1}{128}\)

\(\frac{207}{128}\)

28 tháng 2 2017

kết quả là 2008 đấy bạn

nếu nhà bạn có máy tính thì chỉ cần bấm phương trình x thì sẽ ra kết quả thôi

28 tháng 2 2017

\(\frac{x-1}{2007}+\frac{x-2}{2006}+\frac{x-3}{2005}=\frac{x-4}{2004}+\frac{x-5}{2003}+\frac{x-6}{2002}\)

=> \(\left(\frac{x-1}{2007}-1\right)+\left(\frac{x-2}{2006}-1\right)+\left(\frac{x-3}{2005}-1\right)=\left(\frac{x-4}{2004}-1\right)+\left(\frac{x-5}{2003}-1\right)+\left(\frac{x-6}{2002}-1\right)\)

=> \(\frac{x-1+2007}{2007}+\frac{x-2+2006}{2006}+\frac{x-3+2005}{2005}=\frac{x-4+2004}{2004}+\frac{x-5+2003}{2003}+\frac{x-6+2002}{2002}\)

=> \(\frac{x-2008}{2007}+\frac{x-2008}{2006}+\frac{x-2008}{2005}=\frac{x-2008}{2004}+\frac{x-2008}{2003}+\frac{x-2008}{2002}\)

=> \(\frac{x-2008}{2007}+\frac{x-2008}{2006}+\frac{x-2008}{2005}-\frac{x-2008}{2004}-\frac{x-2008}{2003}-\frac{x-2008}{2002}=0\)

=> \(\left(x-2008\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

Mà \(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\ne0\)

=> x - 2008 = 0 => x = 2008

Vậy x = 2008

9 tháng 8 2017

1+3+4+9=

9 tháng 8 2017

Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2016}{2017}\)

\(=\frac{1.2.3......2016}{2.3.4.......2017}\)

\(=\frac{1}{2017}\)

6 tháng 8 2019

a,\(\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)

\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x};Đkxđ:x\ne1\)

\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}\left(\frac{-9}{20}\right)=\frac{5}{2-2x}\)

\(\Rightarrow\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2-2x}\)

\(\Rightarrow\frac{1}{x-1}-\frac{5}{2-2x}=\frac{-3}{10}\)

\(\Rightarrow\frac{1}{x-1}-\frac{5}{-2\left(x-1\right)}=\frac{-3}{10}\)

\(\Rightarrow\frac{1}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{3}{10}\)

\(\Rightarrow\frac{7}{2\left(x-1\right)}=\frac{-3}{10}\)

\(\Rightarrow70=-6\left(x-1\right)\)

\(\Rightarrow6x=6-70\)

\(\Rightarrow6x=-64\)

\(\Rightarrow x=\frac{-32}{3}x\ne1\)

19 tháng 7 2016

a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)

\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)

đề sai

b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(x=-2004\)

c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)

\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)

\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)

\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)

\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)

\(x=200\)

d)chịu