K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Ta có : 

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

Vậy \(A=\frac{33}{50}\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

7 tháng 6 2016

a) 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/24.25

= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/24 - 1/25

= 1/5 - 1/25

= 4/25

b) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 -1/101

= 1 - 1/101

= 100/101

c) 3/1.4 + 3/4.7 + ... + 3/2002.2005

= 1 - 1/4 + 1/4 - 1/7 + ... + 1/2002 - 1/2005

= 1 - 1/2005

= 2004/2005

d) 5/2.7 + 5/7.12 + ... + 5/1997.2002

= 1/2 - 1/7 + 1/7 - 1/12 + ... + 1/1997 - 1/2002

= 1/2 - 1/2002

= 500/1001

7 tháng 6 2016

a,A =  \(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{24\times25}\)

A\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

A\(=\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)

b, B=\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)

B= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

B=\(1-\frac{1}{101}=\frac{100}{101}\)

c, \(C=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{2002\times2005}\)

C= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)

C= \(1-\frac{1}{2005}=\frac{2004}{2005}\)

d, D= \(\frac{5}{2\times7}+\frac{5}{7\times12}+...+\frac{5}{1997\times2002}\)

D= \(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{1997}-\frac{1}{2002}\)

D= \(\frac{1}{2}-\frac{1}{2002}=\frac{1001}{2002}-\frac{1}{2002}=\frac{1000}{2002}=\frac{500}{1001}\)

12 tháng 8 2015

1/1.4 + 1/4.7 + 1/7.10 + ... + 1/31.34

= 1/3 . ( 3/1.4 + 3/4.7 + 3/7.10 + .... + 3/31.34 )

= 1/3 . ( 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/31 - 1/34 )

= 1/3 . ( 1 - 1/34 )

= 1/3 . 33/34 

= 11/34

7 tháng 6 2018

làm dài lắm,nếu muốn thì k minh còn ko thì thôi

7 tháng 6 2018

a,0,36.350+1,2.20.3+9.4.4,5

=13.3.35+12.2.3+9.2.3.3

=3.(13.35+12.2+.9.2.3)

=3.(455+24+54)

=3.533

=1599

b,2015.2016-5/2015.2015+2010

=4062240-5+2010

=4064245

c,2/1.3+2/3.5+2/5.7+...+2/71.73

=1-1/3+1/3-1/5+1/5-1/7+...+1/71-1/73

=1-1/73

=72/73

d,(1+1/2).(1+1/3)+...+(1+1/2018)

=3/2.4/3.5/4+...+2019/2018

=2019/2

e,E=1/4.5+1/5.6+1/6.7+...+1/80.81(làm tương tự với phần d nên mình làm ngắn

     =1/4-1/81

     =77/324

f,F=3/2.3+3/3.4+...+3/99.100

=3.(1/2.3+1/3.4+...+1/99.100)(làm tương tự với d

=3.(1/2-1/100)

=3.49/100

=147/100

gG=5/1.4+5/4.7+...+5/61.64

3G=5.(3/1.4+3./4.7+...+3/61.64)

     =5.(1-1/64)

     =5.63/64

     =315/64

ok nha bạn,mình giữ đúng lời hứa.

20 tháng 8 2023

Để olm.vn giúp em nhá

C = \(\dfrac{1}{1.4}\) + \(\dfrac{1}{4.7}\) + \(\dfrac{1}{7.11}\)+...+ \(\dfrac{1}{994.997}\) + \(\dfrac{1}{997.1000}\)

C = \(\dfrac{1}{3}\).( \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.11}\)+...+ \(\dfrac{3}{994.997}\)\(\dfrac{3}{997.1000}\))

C = \(\dfrac{1}{3}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\)-\(\dfrac{1}{11}\)+...+ \(\dfrac{1}{994}\)\(\dfrac{1}{997}\)\(\dfrac{1}{997}\) - \(\dfrac{1}{1000}\))

C = \(\dfrac{1}{3}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{1000}\))

C = \(\dfrac{1}{3}\)\(\dfrac{999}{1000}\)

C = \(\dfrac{333}{1000}\)

20 tháng 8 2023

Dấu chấm là dấu nhân nhé

13 tháng 5 2015

9A = 1.4.[7+2] + 4.7. [10-1] + 7.10.[13-4] +...+ 91.94. [97-88]

= 1.4.7 + 1.2.4 + 4.7.10 - 1.4.7 + 7.10.13 - 4.7.10+...+ 91.94.97 - 88.91.94

= 1.2.4 + 91.94.97 = 8 +829738 = 829746 => A = 829746 : 9 = 92194

đúng cái nhé

13 tháng 5 2015

9A = 1.4.[7+2] + 4.7. [10-1] + 7.10.[13-4] +...+ 91.94. [97-88]

= 1.4.7 + 1.2.4 + 4.7.10 - 1.4.7 + 7.10.13 - 4.7.10+...+ 91.94.97 - 88.91.94

= 1.2.4 + 91.94.97 = 8 +829738 = 829746 => A = 829746 : 9 = 92194

đúng cái nhé

8 tháng 7 2015

\(E=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{97\cdot100}\)

    \(=\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right):3\)

   \(=\left(1-\frac{1}{100}\right):3=\frac{33}{100}\)

\(F=\frac{3}{1\cdot5}+\frac{3}{5\cdot9}+...+\frac{3}{74\cdot101}\)

    \(=\left(3-\frac{3}{5}+\frac{3}{5}-\frac{3}{9}+...+\frac{3}{74}-\frac{3}{101}\right):4\)

    \(=\left(3-\frac{3}{101}\right):4=\frac{75}{101}\)

10 tháng 3 2019

E = 33/100

F = 75/101

29 tháng 6 2017

Đặt : \(A=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{27\cdot30}\)

\(A=\frac{1}{3}\left(\frac{5}{1}-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+...+\frac{5}{27}-\frac{5}{30}\right)\)

\(A=\frac{1}{3}\left(5-\frac{5}{30}\right)\)

\(A=\frac{1}{3}\cdot\frac{29}{6}\)

\(A=\frac{29}{18}\)

29 tháng 6 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+....+\frac{5}{27.30}\)

\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{30-27}{27.30}\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}\cdot\frac{29}{30}=\frac{29}{18}\)

21 tháng 8 2023

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{34}{103}\)

\(\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)

\(\dfrac{1}{3}.\left(1-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)

\(1-\dfrac{1}{x+3}=\dfrac{34}{103}:\dfrac{1}{3}=\dfrac{34}{103}.3\)

\(1-\dfrac{1}{x+3}=\dfrac{102}{103}\)

\(\dfrac{1}{x+3}=1-\dfrac{102}{103}=\dfrac{103}{103}-\dfrac{102}{103}\)

\(\dfrac{1}{x+3}=\dfrac{1}{103}\)

\(\Rightarrow x+3=103\)

\(x=103-3\)

\(x=100\)

Vậy x = 100