Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 2² + 2³ + 2⁴ + ... + 2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰
* Chứng minh A chia hết cho 3:
Ta có:
A = 2(1 + 2) + 2³(1 + 2) + ... + 2⁵⁷(1 + 2) + 2⁵⁹(1 + 2)
= 3(2 + 2³ + ... + 2⁵⁷ + 2⁵⁹)
⇒ A là bội của 3
⇒ A chia hết cho 3
* Chứng minh A chia hết cho 7:
Ta có:
A = 2(1 + 2 + 2²) + 2⁴(1 + 2 + 2²) + ... + 2⁵⁵(1 + 2 + 2²) + 2⁵⁸(1 + 2 + 2²)
= 7(2 + 2⁴ + ... + 2⁵⁵ + 2⁵⁸)
⇒ A là bội của 7
⇒ A chia hết cho 7
* Chứng minh A chia hết cho 15:
Ta có 15 = 3 . 5, do A đã chia hết cho 3 nên chỉ cần chứng minh A chia hết cho 5:
A= 2 + 2³ + 2² + 2⁴ + ... + 2⁵⁷ + 2⁵⁹ + 2⁵⁸ + 2⁶⁰
= 2(1 + 2²) + 2²(1 + 2²) + ... + 2⁵⁷(1 + 2²) + 2⁵⁸(1 + 2²)
= 5(2 + 2² + ... + 2⁵⁷ + 2⁵⁸)
⇒ A là bội của 5
⇒ A chia hết cho 5
⇒ A vừa chia hết cho 3 vừa chia hết cho 5 nên A chia hết cho 15
Tick nhé
A = 2 + 22 + 23 + 24 + ... + 258 + 259 + 260
A = (2 + 22 + 23 + 24) + ... + (257 + 258 + 259 + 260)
A = (2.1 + 2.2 + 2.2.2 + 2.2.2.2) + ... + (257.1 + 257.2 + 257.2.2 + 257.2.2.2)
A = 2.(1 + 2 + 4 + 8) + ... + 257.(1 + 2 + 4 + 8)
A = 2.15 + ... + 257.15
A = 15.(2 + 25 + ... + 257) chia hết cho 15
=> A chia hết cho 15
A = 2 + 22 + 23 + ... + 258 + 259 + 260
A = (2 + 22 + 23) + ... + (258 + 259 + 260)
A = (2.1 + 2.2 + 2.2.2) + ... + (258.1 + 258.2 + 258.2.2)
A = 2.(1 + 2 + 4) + ... + 258.(1 + 2 + 4)
A = 2.7 + ... + 258.7
A = 7.(2 + 24 + ... + 258) chia hết cho 7
=> A chia hết cho 7
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
A = 2 . ( 1+2 ) + 23 . (1+2) + ... + 259 . (1+2)
A = 2.3 + 23.3 + ... + 259.3
A = (2+23+...+259) . 3
vì 3 chia hết cho 3 suy ra A chia hết cho 3
1) \(B=1+5+5^2+5^3+....+5^{101}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{100}+5^{101}\right)\)
\(=\left(1+5\right)+5^2\left(1+5\right)+....+5^{100}\left(1+5\right)\)
\(=\left(1+5\right)\left(1+5^2+....+5^{100}\right)\)
\(=6\left(1+5^2+...+5^{100}\right)\)\(⋮6\)
Ta có: A = ( 2 + 22 ) + ( 23 + 24) + ...... + (259 + 260)
= 2. ( 1 +2 ) + 23.(1 + 2) + ..... + 559(1 + 2)
= 2. 3 + 23.3 + ... + 259 . 3
= 3.(2 + 23 + 25 + ....... + 259) chia hết cho 3
Chia hết cho 3 có rồi nên mình làm chia hết cho 7 và 15 thôi !
A=(2+2^2+2^3)+(2^4+2^5+2^6)+.....+(2^58+2^59+2^60)
A=14+2^3.(2+2^2+2^3)+....+2^57.(2+2^2+2^3)
A=14+2^3.14+...+2^57.14
A=14.(1+2^3+...+2^57)
A=2.7.(1+2^3+...+2^57) chia hết cho 7
Chia hết cho 15
A=(2+2^2+2^3+2^4)+......+(2^57+2^58+2^59)
A=30+....+2^56.(2+2^2+2^3+2^4)
A=2.15+...+2^56.2.15
A=2.15(1+...+2^56) chia hết cho 15
a) \(C=5+5^2+5^3+...+5^8\)
\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(C=\left(5+25\right)+5^2\cdot\left(5+25\right)+5^4\cdot\left(5+25\right)+5^6\cdot\left(5+25\right)\)
\(C=30+5^2\cdot30+5^4\cdot30+5^6\cdot30\)
\(C=30\cdot\left(1+5^2+5^4+5^6\right)\)
Vậy C chia hết cho 30
b) \(D=2+2^2+2^3+...+2^{60}\)
\(D=2\left(1+2\right)+2^2\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(D=2\cdot3+2^2\cdot3+...+2^{59}\cdot3\)
\(D=3\cdot\left(2+2^2+...+2^{59}\right)\)
Vậy D chia hết cho 3
\(D=2+2^2+2^3+...+2^{60}\)
\(D=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(D=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(D=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy D chia hết cho 7
\(D=2+2^2+2^3+...+2^{60}\)
\(D=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(D=2\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)
\(D=2\cdot15+2^5\cdot15+...+2^{57}\cdot15\)
\(D=15\cdot\left(2+2^5+...+2^{57}\right)\)
Vậy D chia hết cho 15
a) C = 5 + 5² + 5³ + ... + 5⁸
= (5 + 5²) + 5².(5 + 5²) + 5⁴.(5 + 5²) + 5⁶.(5 + 5²)
= 30 + 5².30 + 5⁴.30 + 5⁶.30
= 30.(1 + 5² + 5⁴ + 5⁶) ⋮ 30
Vậy C ⋮ 30
b) *) Chứng minh D ⋮ 3
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Vậy D ⋮ 3 (1)
*) Chứng minh D ⋮ 7
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy D ⋮ 7 (2)
*) Chứng minh D ⋮ 15
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2 + 2² + 2³) + 2⁵.(1 + 2 + 2² + 2³) + 2⁵⁷.(1 + 2 + 2² + 2³)
= 2.15 + 2⁵.15 + ... + 2⁵⁷.15
= 15.(2 + 2⁵ + ... + 2⁵⁷) ⋮ 15
Vậy D ⋮ 15 (3)
Từ (1), (2), (3) suy ra D chia hết cho lần lượt 3; 7 và 15
a) \(\left(1+2+2^2+...+2^7\right)\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=\left(1+2\right)+2^2.\left(1+2\right)+...+2^6.\left(1+2\right)\)
\(=3+2^2.3+...+2^6.3\)
\(=3.\left(1+2^2+...+2^6\right)⋮3\left(đpcm\right)\)
a) Đặt A = 1 + 2 + 22 + 23 + ... + 27
Ta có:
A = 1 + 2 + 22 + 23 + ... + 27
\(\Rightarrow\)2A = 2 + 22 + 23 + 24 + ... + 28
\(\Rightarrow\)A = 28 - 1 = 255
Vì 255\(⋮\)3\(\Rightarrow\)2 + 22 + 23 + 24 + ... + 28\(⋮\)3
\(\Rightarrow\)ĐPCM
B = 2 + 22 + 23 + ... + 210
Xét dãy số: 1; 2; 3;..; 10
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (10 - 1) : 1 + 1 = 10 (số hạng)
Vì 10 : 2 = 5
Nhóm hai số hạng liên tiếp của tổng B vào nhau ta được:
B = (2 + 22) + (23 + 24) + ... +(29 + 210)
B =2.(1 + 2) + 23.(1 + 2) + ...+ 29.(1 + 2)
B = (1 +2).(2 + 23 + ...+ 29)
B = 3.(2 + 23 + ..+ 29) ⋮ 3 (đpcm)
B = 2 + 22 + 23 + ... + 210
Xét dãy số: 1; 2; 3;..; 10
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (10 - 1) : 1 + 1 = 10 (số hạng)
Vì 10 : 3 = 3 dư 1 nên nhóm ba hạng tử của B thành một nhóm thì ta được
B = (22 + 23 + 24) + (25 + 26 + 27) + (28+ 29 + 210) + 2
B = 22.(1 + 2 +22) + 25.(1 + 2 + 22) + 28.(1 + 2 + 22) + 2
B = (1 + 2 + 22).(22 + 25 + 28) + 2
B = (1 + 2 + 4).(22 + 25 + 28) + 2
B =(3 + 4).(22 + 25 + 28) + 2
B = 7.(22 + 25 + 28) + 2
B : 7 dư 2
Chứng minh B chia hết cho 7 là điều không thể xảy ra.