Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\frac{9}{1.4}+\frac{9}{4.7}+\frac{9}{7.10}+...+\frac{9}{61.64}\)
\(=3\left(\frac{1}{1}-\frac{1}{64}\right)\)
\(=\frac{189}{64}\)
b) \(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)
\(=\frac{1}{1}-\frac{1}{25}\)
\(=\frac{24}{25}\)
c) Chưa học tới
b)1/1.5+1/5.9+1/9.13+...+1/21.25
=1/4.(4/1.5+4/5.9+4/9.13+4/21.25)
=1/4.(4-4/5+4/5-4/9+4/9-4/13+...+4/21-4/25)
=1/4.(4-4/25)
=1/4.(100/25-4/25)
=1/4.96/25
=24/25
2.
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{1}{2}.\left(\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{15}{93}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow\)2x + 3 = 93
\(\Rightarrow\)2x = 93 - 3
\(\Rightarrow\)2x = 90
\(\Rightarrow\)x = 90 : 2 = 45
\(H=\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{33.37}\)
= \(\frac{3}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{33}-\frac{1}{37}\right)\)
= \(\frac{3}{4}\left(1-\frac{1}{37}\right)\)
= \(\frac{3}{4}.\frac{36}{37}=\frac{27}{37}\)
Bài 1: Bạn ơi số 2004 không thuộc dãy A
A có số số hạng là: (2005 - 5) : 4 + 1 = 501 (số hạng)
A = (2005 + 5) x 501 : 2 = 503505
Bài 2:
a) B = 4 . 1 + 4 . 5 + 4 . 52 + 4 . 53 + ... + 4 . 51000
=> B = 4 . ( 1 + 5 + 52 + 53 + .... + 51000)
b) 5 + 52 + 53 + .... + 51000 có tận cùng là 0 (Do các lũy thừa với cơ số là 5 thì có tận cùng là 5 [25] mà ở đây có số số hạng là chẵn)
=> 1 + 5 + 52 + 53 + .... + 51000 có tận cùng là số 1
=> 4 . ( 1 + 5 + 52 + 53 + .... + 51000) có tận cùng là 4.
Vậy B có tận cùng là 4.
Bài 3:
1. A = 1.3 + 3.5 + 5.7 + ......... + 97.99
=> A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + .... + 97.(97 + 2)
=> A = 12 + 1.2 + 32 + 3.2 + 52 + 5.2 + .... + 972 + 97.2
=> A = (12 + 32 + 52 + .... + 972) + (1.2 + 3.2 + 5.2 + .... + 97.2)
=> A = (12 + 32 + 52 + .... + 972) + 2(1 + 3 + 5 + .... + 97)
=> A = (12 + 32 + 52 + .... + 972) + 2 { (97 + 1) . [(97 - 1) : 2 + 1] : 2 }
=> A = (12 + 32 + 52 + .... + 972) + 24802
Đặt B = (12 + 32 + 52 + .... + 972)
=> B = 1.1 + 3.3 + 5.5 + .... + 97.97
=> B = 1.(0 + 1) + 3.(1 + 2) + 5.(4 + 1) + ..... + 97.(96 + 1)
=> B = 0 + 1.1 + 3 + 2.3 + 5 + 4.5 + .... + 97 + 96.97
=> B = (0 + 3 + 5 + .... + 97) + (1.1 + 2.3 + 4.5 + .... + 96.97)
=> B = 2400 + \(\frac{\left(97-1\right).97\left(97+1\right)}{6}\)
=> B = 2400 + 152096 = 154496
=> A = 154496 + 4802 = 159298
(Làm tương tự ở câu 2 nha)
Bài 1 :
Ta có :
\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)
Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)
Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)
Vậy \(A>B\)
Bài 2 :
Ta có :
\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)
\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)
\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)
\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)
Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)
Nên : \(M>4\)
Vậy \(M>4\)
Bài 3 :
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)
Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)
\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)
\(\Rightarrow A< \frac{3}{4}\)
Vậy \(A< \frac{3}{4}\)
Bài 4 :
\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow A=\frac{1008}{2017}\)
Vậy \(A=\frac{1008}{2017}\)
\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)
\(1-\frac{1}{x+2}=\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)
\(\Rightarrow x+2=2017\)
\(\Rightarrow x=2017-2=2015\)
Vậy \(x=2015\)
\(A=47.36+64.47+15\)
\(A=47.\left(36+64\right)+15\)
\(A=47.100+15\)
\(A=4700+15\)
\(A=4715\)
\(B=27+35+65+73+75\)
\(B=\left(27+73\right)+\left(35+65\right)+75\)
\(B=100+100+75\)
\(B=275\)
\(C=37+37.15+84.37\)
\(C=37.\left(1+15+84\right)\)
\(C=37.100\)
\(C=3700\)
\(D=\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+\frac{1}{23.24}\)
\(D=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+\frac{1}{23}-\frac{1}{24}\)
\(D=\frac{1}{20}-\frac{1}{24}\)
\(D=\frac{24}{480}-\frac{20}{480}\)
\(D=\frac{4}{480}=\frac{1}{120}\)
\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(E=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(E=1-\frac{1}{50}\)
\(E=\frac{49}{50}\)
1: \(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
=1/2*10/39
=5/39
2: \(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{11}\right)=\dfrac{5}{2}\cdot\dfrac{10}{11}=\dfrac{50}{22}=\dfrac{25}{11}\)
Bài 1a
B=4/1.3 + 4/3.5 + 4/5.7+...+4/2017.2019
B=4.2/(1.3).2 + 4.2/(3.5).2 + 4.2/(5.7).2+....+4.2/(2017.2019).2
B=2.( 2/1.3 + 2/3.5 + 2/5.7 +...+ 2/2017.2019 )
B=2.(1-1/3+1/3-1/5+1/5-1/7+....+1/2017-1/2019)
B=2.(1-1/2019)
B=2.(2019/2019-1/2019)
B=2.2018/2019
B=4036/2019
A = 47 x 36 + 64 x 47 + 15
A= 47 x ( 64 + 36 ) + 15 = 47 x 100 + 15 = 4700 + 15 = 4715
vậy A= 4715
B= 27+35 + 65 + 73+ 75
B= (27+ 73) + ( 35 + 65) +75
B= 100 +100 +75 = 275
vậy B= 275
C= 37 +37 x 15 +37 x 84
C= 37 x ( 1+15 +84 )= 37 x 100 = 3700
vậy C= 3700
D = 1/20x21 + 1/21x22 + 1/22x23 + 1/23x24
D= 1/20 - 1/21 + 1/21 - 1/22 + 1/22 - 1/23 + 1/23 - 1/24
D= 1/20 -1/24 = 1/120 vậy D= 1/120
E= 1/1x2 + 1/2x3 + ...... + 1/49x50
E= 1/1 - 1/2 + 1/2 - 1/3 +...... + 1/49 - 1/50
E = 1 - 1/50 = 49/50
vậy E= 49/50
CHÚC HOK TOT
A= \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{35}+\frac{1}{99}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.6}+...+\frac{2}{9.11}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)
\(2A=1-\frac{1}{11}=\frac{10}{11}\)
\(A=\frac{10}{11}:2=\frac{5}{11}\)
\(D=\frac{3^2}{1.4}+\frac{3^2}{4.7}+...+\frac{3^2}{13.16}\)
\(D=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{13.16}\right)\)
\(D=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)
\(D=3.\left(1-\frac{1}{16}\right)=3.\frac{15}{16}=2\frac{13}{16}\)
\(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\)
\(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)
\(4.B=1-\frac{1}{97}\)
\(4.B=\frac{96}{97}\)
\(B=\frac{96}{97}:4\)
\(B=\frac{24}{97}\)