Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1/1.2+1/1.3+...+1/99.100
= 1-1/2+1/2-1/3+1/3+...+1/99-1/100
=1-1/100
=99/100
\(B=3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+........+\frac{1}{27.30}\right)\)
\(B=3.\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......-\frac{1}{27}+\frac{1}{27}-\frac{1}{30}\right)\)
\(B=1.\left(\frac{1}{1}-\frac{1}{30}\right)\)
\(B=\frac{29}{30}\)
B =\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
B = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{27}-\frac{1}{30}\)
B =\(\frac{1}{1}-\frac{1}{30}\)
B =\(\frac{29}{30}\)
a)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(=1-\frac{1}{2009}\)
\(=\frac{2008}{2009}\)
b) =\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{94}-\frac{1}{97}\)
\(=1-\frac{1}{97}\)
=\(\frac{96}{97}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2008.2009}\) \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2008}-\frac{1}{2009}\)
= 1 - 1/2009
= 2008/2009
b) 3/1.4 + 3/4.7 + 3/7.10 + .... + 3/94.97
= 1- 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/94 - 1/97
= 1 - 1/97
= 96/97
a) \(2\frac{3}{13}-\frac{5}{9}-\left(\frac{3}{13}+\frac{4}{9}\right)\)
= \(\frac{29}{13}-\frac{5}{9}-\left(\frac{3}{13}+\frac{4}{9}\right)\)
= \(\left(\frac{29}{13}-\frac{3}{13}\right)-\left(\frac{5}{9}+\frac{4}{9}\right)\)
= \(2-1\)
= \(1\)
b) \(17\frac{4}{16}+\frac{3}{4}-\left(2\frac{3}{12}+75\%\right)\)
= \(\frac{69}{4}+\frac{3}{4}-\left(\frac{27}{12}+\frac{3}{4}\right)\)
= \(\left(\frac{69}{4}+\frac{3}{4}\right)-\left(\frac{27}{12}+\frac{3}{4}\right)\)
= \(18-3\)
= \(15\)
c) \(\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+....+\frac{6}{101.103}+\frac{6}{103.106}\)
= \(3.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+....+\frac{2}{101.103}+\frac{2}{103.106}\right)\)
= \(3.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{101}-\frac{1}{103}+\frac{1}{103}-\frac{1}{106}\right)\)
= \(3.\left(\frac{1}{5}-\frac{1}{106}\right)\)
= \(3.\frac{101}{530}\)
= \(\frac{303}{530}\)
a) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\frac{5.2^{30}.3^{18}-2^2.2^{27}.3^{20}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{18}.3^{18}\left(5.3-7.2\right)}\)
\(=\frac{2.1}{1}=2\)
a) 1/1 - 1/3 +1/3 - 1/5 +........+1/49 - 1/51
=1/1 - 1/51 (các số liền kề nhau cộng lại bằng 0)
=50/51
còn câu b bạn tự giải
nhớ thank mik nha!!!!!
b,khoảng cách của nó là 3 mà tử của nó bằng 3 chứng tỏ nó là dạng đủ
1/1-1/4+1/4-1/7+...+1/97-1/100
1-1/100=99/100
a) Ta có: \(15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\)
\(=15+\frac{3}{13}-3-\frac{4}{7}-8-\frac{3}{13}\)
\(=4-\frac{4}{7}=\frac{24}{7}\)
b) Ta có: \(\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\)
\(=7+\frac{4}{9}+4+\frac{7}{11}-3-\frac{4}{9}\)
\(=8+\frac{7}{11}=\frac{95}{11}\)
c) Ta có: \(\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+5\frac{7}{9}\)
\(=\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+\frac{-7}{9}\cdot\frac{-52}{7}\)
\(=\frac{-7}{9}\cdot\left(\frac{4}{11}+\frac{7}{11}-\frac{52}{7}\right)\)
\(=\frac{-7}{9}\cdot\frac{45}{-7}=5\)
d) Ta có: \(50\%\cdot1\frac{1}{3}\cdot10\cdot\frac{7}{35}\cdot0.75\)
\(=\frac{1}{2}\cdot\frac{4}{3}\cdot10\cdot\frac{7}{35}\cdot\frac{3}{4}\)
\(=5\cdot\frac{7}{35}=1\)
e) Ta có: \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}=\frac{43}{43}-\frac{1}{43}\)
\(=\frac{42}{43}\)
a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)
=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))
= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))
=9(1-\(\frac{1}{100}\))
A=\(\frac{891}{100}\)
b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))
=1-\(\frac{1}{30}\)
B=\(\frac{29}{30}\)
a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)
\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9.\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)
\(=1-\dfrac{1}{30}\)
\(=\dfrac{29}{30}\)