\(A=\frac{1}{2}\)(1+2)+\(\frac{1}{3}\)(1+2+3)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2024

Lời giải:

$A=\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+....+\frac{1}{2013}.\frac{2013.2014}{2}$

$=\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{2014}{2}$

$=\frac{3+4+5+...+2014}{2}$

$=\frac{1+2+3+4+5+...+2014}{2}-\frac{3}{2}$
$=\frac{2014.2015:2}{2}-\frac{3}{2}$

$=1014551$

12 tháng 3 2017

Ta có Tổng quát  \(\frac{1+2+3+...+n}{\left(n+1\right)}=\frac{\frac{\left(n+1\right)n}{2}}{n+1}\)

                                                                = \(\frac{n}{2}\) 

=> A = \(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+...+\frac{2012}{2}\)

        = \(\frac{1+2+3+..+2012}{2}=\frac{2025078}{2}=1012539\)  

31 tháng 12 2016

1 nha bạn

Chúc các bạn học giỏi

NHa

31 tháng 12 2016

1 đó bạn

10 tháng 3 2017

B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

3B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\)

3B-B=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\right)\)

2B=\(1-\frac{1}{3^{2013}}\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

10 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)

\(3B=\frac{1}{3}.3+\frac{1}{3^2}.3+\frac{1}{3^3}.3+...+\frac{1}{3^{2013}}.3\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)

\(3B-B=2B=\)

3B=    \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)

B=              \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

2B=    1  +     0   +    0   +    0    +.......+   0           -   \(\frac{1}{3^{2013}}\)    

\(\Rightarrow2B=1-\frac{1}{3^{2013}}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2013}}\)

\(\Rightarrow B< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\).

3 tháng 1 2016

Câu 1: A=72/55

Câu 2: (S-P)2013 =0

3 tháng 1 2016

các bn có thể cho mình cách làm đc ko

 

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

2 tháng 4 2019

Biển Cửa Lò, chùa Thiên mụ, núi Ngũ Hành Sơn, chùa Cầu Hội An, kinh thành Huế, đèo Hải Vân

🐼🐼🐼

2 tháng 4 2019

Ta có:

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{1006}\)

\(=\frac{1}{1007}+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2012}+\frac{1}{2013}\left(1\right)\)

Mà \(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow S=P\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)

Vậy...

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)