Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/100
Ta đổi A = 2-1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
A= 2 - 1 - 1/100 =200/100 -100/100 - 1/100
A= 99/100
Cảm ơn bạn Kudo Shinichi, nhưng
1=2-1 ->ok
1/2=1-1/2 ->ok
1/3=1/2-1/3 -> sai
vì 1/2-1/3=1/6
Bài 1:
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
= \(1-\frac{1}{50}=\frac{49}{50}\)
Bài 2:
Ta có: \(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
Vậy A < 2
Bài 3:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
Bài 4:
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)
A=1-1/2+1/2-1/3+.............................1/49-1/50
A=1-1/50
A=49/50
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
Mình ko chép đề nx nha
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{999}-\frac{1}{1000}\)
A = \(\frac{1}{1}-\frac{1}{1000}\)
A = \(\frac{1000}{1000}-\frac{1}{1000}=\frac{999}{1000}\)
B = \(\frac{1}{501}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{999}+...\frac{1}{1}+...+\frac{1}{999}-\frac{1}{502}+\frac{1}{1000}+\frac{1}{501}\)
B = \(\frac{1}{501}-\frac{1}{501}+\frac{1}{1000}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{502}+\frac{1}{999}-\frac{1}{999}+...+\frac{1}{1}\)
B = \(\frac{1}{1}=1\)
Vậy \(\frac{A}{B}=\frac{\frac{999}{1000}}{1}=\frac{999}{1000}\)
a) \(\frac{1}{9}+3,25+5\frac{3}{16}+4\frac{1}{3}+2,8+0,5=\frac{1}{9}+\frac{13}{4}+\frac{83}{16}+\frac{13}{3}+\frac{14}{5}+\frac{1}{2}\)
\(=\frac{11651}{720}\)
B) \(2\frac{1}{3}+0,45+4,25+\frac{1}{81}+6\frac{8}{27}=\frac{7}{3}+\frac{9}{20}+\frac{17}{4}+\frac{1}{81}+\frac{170}{27}\)
\(=\frac{10807}{810}\)
C) \(1,25+2\frac{1}{4}+4\frac{2}{5}+0,3+2,14+4\frac{1}{8}=\frac{5}{4}+\frac{9}{4}+\frac{22}{5}+\frac{3}{10}+\frac{107}{50}+\frac{33}{8}\)
\(=\frac{2893}{200}\)
CHÚC BN HỌC TỐT!!!!!
Bài 1 :
\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)
\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)
\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)
\(\Rightarrow x\cdot\frac{24}{50}=1\)
\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)
#Louis
\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)
\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)
\(\frac{12}{25}x=1\)
Đến đây dễ rồi :)))
Bn tự tính típ nha
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)\
\(A=1-\frac{1}{1000}=\frac{999}{1000}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\)
\(A=1-\frac{1}{1000}\)
\(A=\frac{999}{1000}\)