Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo như đề thì :
2 = 4
3 = 9
......
đều là bình phương của số đó.
Ta có:
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
vậy:
2 = 4
3 = 9
4 = 16
5 = 25
6 = 36
7 = 49
8 = 64
9 = 81
a ) \(\sqrt{\frac{49}{9}-\frac{4}{3}.\sqrt{5}}=\sqrt{5-2.\sqrt{5}.\frac{2}{3}+\frac{4}{9}}=\sqrt{\left(\sqrt{5}-\frac{2}{3}\right)^2}=\sqrt{5}-\frac{2}{3}\)
b ) \(\sqrt{\frac{64}{9}-\frac{2}{3}.\sqrt{7}}=\sqrt{7-2.\sqrt{7}.\frac{1}{3}+\frac{1}{9}}=\sqrt{\left(\sqrt{7}-\frac{1}{3}\right)^2}=\sqrt{7}-\frac{1}{3}\)
c ) \(\sqrt{\frac{79}{36}+\frac{2}{3}\sqrt{7}}=\sqrt{\frac{72}{36}+2.2.\frac{\sqrt{7}}{6}+\frac{7}{36}}=\sqrt{\left(2+\frac{\sqrt{7}}{6}\right)^2}=2+\frac{\sqrt{7}}{6}=\frac{12+\sqrt{7}}{6}\)
d ) \(\sqrt{\frac{45}{4}-\sqrt{11}}=\sqrt{\frac{44}{4}-\sqrt{11}+\frac{1}{4}}=\sqrt{11-\sqrt{11}+\frac{1}{4}}=\sqrt{\left(\sqrt{11}-\frac{1}{2}\right)^2}=\sqrt{11}-\frac{1}{2}\)
\(5\sqrt{4x-16}-\dfrac{7}{3}\sqrt{9x-36}=36-3\sqrt{x-4}\)
\(\Leftrightarrow10\sqrt{x-4}-7\sqrt{x-4}+3\sqrt{x-4}=36\)
\(\Leftrightarrow\sqrt{x-4}=6\)
\(\Leftrightarrow x-4=36\)
hay x=40
\(3\sqrt{144}-5\sqrt{49}+\dfrac{1}{2}\sqrt{36}\)
\(=3.12-5.7+\dfrac{1}{2}.6\)
\(=36-35+3=4\)
\(\sqrt{3\cdot27}-\sqrt{\dfrac{144}{36}}\)=\(\sqrt{81}-\sqrt{4}\)=9-2=7
\(\dfrac{2\cdot3+3\cdot6}{4}\)=6
\(\sqrt{7}-\sqrt{7-2\cdot\sqrt{7}+1}\)=\(\sqrt{7}-\left(\sqrt{7}-1\right)\)=1
\(\dfrac{\sqrt{3-2\cdot\sqrt{3}+1}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{\sqrt{3}-1}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{1}{\sqrt{2}}\)
\(\dfrac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)+\(\dfrac{\sqrt{3}\cdot\left(1+\sqrt{3}\right)}{\sqrt{3}+1}\)-(\(\sqrt{5}+3\))
=(\(\sqrt{5}+3\))+\(\sqrt{3}\)-(\(\sqrt{5}+3\))=\(\sqrt{3}\)
\(\sqrt{3}\cdot\sqrt{9}+5\cdot\sqrt{4}\cdot3-2\sqrt{3}\)
=\(\sqrt{3}\cdot\left(3+10-2\right)\)
=\(11\sqrt{3}\)
ta có ;\(36-16\sqrt{5}=16-2\cdot4\cdot2\sqrt{5}+20=\left(2\sqrt{5}-4\right)^2\)
\(12+2\sqrt{35}=7+2\sqrt{7}\cdot\sqrt{5}+5=\left(\sqrt{7}+\sqrt{5}\right)^2\)
\(81-36\sqrt{5}=36-2\cdot6\cdot3\sqrt{5}+45=\left(3\sqrt{5}-6\right)^2\)
\(11+4\sqrt{7}=\sqrt{7}+2\cdot2\cdot\sqrt{7}+4=\left(\sqrt{7}+2\right)^2\)
TỪ ĐÓ TÍNH RA
3: Ta có: \(\sqrt{4x+1}=x+1\)
\(\Leftrightarrow x^2+2x+1=4x+1\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)
\(\Leftrightarrow3\sqrt{x-1}=15\)
\(\Leftrightarrow x-1=25\)
hay x=26
5: Ta có: \(\sqrt{4x^2-12x+9}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Lời giải:
Gọi biểu thức là A.
\(A=256.\frac{1}{8}+\frac{1}{49^2}.7^3+\frac{1}{36^2}.\frac{1}{8^2}.27\\ =32+\frac{1}{7}+\frac{1}{3072}=32\frac{3079}{21504}\)