![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tổng S có: (98-2):2+1=49 số hạng
b) S=22+24+26+....+298
=> 22A=22(22+24+26+....+298)
=> 4A=24+26+28+....+2100
=> 4A-A=(24+26+28+....+2100)-(22+24+26+....+298)
=> 3A=2100-22
=> \(A=\frac{2^{100}-2^2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 2100 - 299 - 298 - ...-2-1
=> 2A = 2101 - 2100 - 299-...-22 - 2
=> 2A-A = 2101 - 2100 - 2100 + 1
A = 2101 - 2100.(1+1) + 1
A = 2101 - 2100. 2+1
A = 2101- 2101+1
A = 1
b) B = 1 - 5 + 52 - 53+...+598-599
=> 5B = 5 - 52+53-54+...+599-5100
=> 5B+B = -5100+1
6B = -5100+1
\(B=\frac{-5^{100}+1}{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta tính trường hợp tổng quát có n số hạng. Ta có:
+/ S1 = 1 + 2 + 3 + ....+n = \(\frac{n\left(n+1\right)}{2}\)
+/ S2 = 1.2 + 2.3 + 3.4 +...+ n(n+1)
3S2 = 1.2.3 + 2.3.3 + 3.4.3 +..+ n(n+1).3
3S2= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +..+ n(n+1)(n+2 -(n-1))
3S2= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +.. - (n-1)n(n+1) + n(n+1)(n+2)
3S2= n(n+1)(n+2)
=> S2 = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Tính S = 1² + 2² + ...+ n²
Ta có: S2 - S1 = [1.2 + 2.3 + 3.4 +...+ n(n+1)]-(1 + 2 + 3 + ....+n)
=> S2 - S1=(1.2-1)+(2.3-2)+(3.4-3)+...+[n(n+1)-n]
=> S2 - S1=1+4+9+...+n2=12+22+32+...+n2=S
Như vậy: S=S2-S1=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
=> \(S=n\left(n+1\right).\left(\frac{n+2}{3}-\frac{1}{2}\right)\)
=> \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Thay n=98 => \(S=\frac{98.99.197}{6}=318549\)
b/ 2014.2016=2014(2015+1)=2014+2014.2015=2014+2015(2015-1)=2014+20152-2015=20152-1<20152
Vậy 2014.2016<20152
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=2^{100}-2^{99}-....-2^2-2^1-1\)
\(\Rightarrow2D=2^{101}-2^{100}-2^{99}-......-2^2-2^1\)
\(\Rightarrow2D-D=\left(2^{101}-2^{100}-2^{99}-.....-2^2-2^1\right)-\left(2^{100}-2^{99}-....-2^2-2^1-1\right)\)
\(\Rightarrow D=2^{101}-1\)
bài tập về nhà của Nguyễn Thành Đô, o0o I am a studious person o0o tl vô ich
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 1.1 + 2.2 + 3.3 + ... + 98.98
A = 1.(2-1) + 2.(3-1) + 3.(4-1) + ... + 98.(99-1)
A = 1.2-1+2.3-2+3.4-3+...+98.99-99
A = (1.2 + 2.3 + 3.4 + ... + 98.99) - (1 + 2 + 3 +... + 99)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 98.99
3B= 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3
3B = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ...+ 98.99 (100-97)
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 98.99.100 - 97.98.99
3B = (1.2.3 + 2.3.4 + 3.4.5 + ... + 98.99.100) - (1.2.3 +2.3.4+...+97.98.99)
3B = 98.99.100
B = 98. (99:3).100
B = 98.33.100
B = 323400
Vậy: A = 323400 - (1+99).99:2
A = 323400 - 4950
A = 318450
![](https://rs.olm.vn/images/avt/0.png?1311)
B=12+22+32+...+972+982
B=1+2(1+1)+3(2+1)+...+97(96+1)+98(97+1)
B=1+1.2+2+2.3+3+...+96.97+97+97.98+98
B=(1.2+2.3+...+96.97+97.98)+(1+2+3+...+98)
B=313698+4851
B=318549
\(A=2^0+2^2+2^4+...+2^{98}\)
\(2^2\cdot A=2^2+2^4+2^6+...+2^{100}\)
\(4A-A=\left(2^2+2^4+2^6+...+2^{100}\right)-\left(2^0+2^2+2^4+...+2^{98}\right)\)
\(3A=2^{100}-1\)
\(A=\frac{2^{100}-1}{3}\)
\(A=2^0+2^2+2^4+...+2^{98}\)
\(2^2\cdot A=2^2+2^4+2^6+...+2^{100}\)
\(4A-A=\left(2^2+2^4+...+2^{100}\right)-\left(2^0+2^2+...+2^{98}\right)\)
\(3A=2^{100}-2^0\)
\(A=\frac{2^{100}-1}{3}\)